Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
New Phytol ; 243(6): 2470-2485, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39080986

RESUMEN

Angiosperms with large genomes experience nuclear-, cellular-, and organism-level constraints that may limit their phenotypic plasticity and ecological niche, which could increase their risk of extinction. Therefore, we test the hypotheses that large-genomed species are more likely to be threatened with extinction than those with small genomes, and that the effect of genome size varies across three selected covariates: life form, endemism, and climatic zone. We collated genome size and extinction risk information for a representative sample of angiosperms comprising 3250 species, which we analyzed alongside life form, endemism, and climatic zone variables using a phylogenetic framework. Genome size is positively correlated with extinction risk, a pattern driven by a signal in herbaceous but not woody species, regardless of climate and endemism. The influence of genome size is stronger in endemic herbaceous species, but is relatively homogenous across different climates. Beyond its indirect link via endemism and climate, genome size is associated with extinction risk directly and significantly. Genome size may serve as a proxy for difficult-to-measure parameters associated with resilience and vulnerability in herbaceous angiosperms. Therefore, it merits further exploration as a useful biological attribute for understanding intrinsic extinction risk and augmenting plant conservation efforts.


Asunto(s)
Extinción Biológica , Tamaño del Genoma , Magnoliopsida , Filogenia , Magnoliopsida/genética , Magnoliopsida/fisiología , Genoma de Planta , Clima
2.
New Phytol ; 242(2): 744-759, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38264772

RESUMEN

Angiosperms, which inhabit diverse environments across all continents, exhibit significant variation in genome sizes, making them an excellent model system for examining hypotheses about the global distribution of genome size. These include the previously proposed large genome constraint, mutational hazard, polyploidy-mediated, and climate-mediated hypotheses. We compiled the largest genome size dataset to date, encompassing 16 017 (> 5% of known) angiosperm species, and analyzed genome size distribution using a comprehensive geographic distribution dataset for all angiosperms. We observed that angiosperms with large range sizes generally had small genomes, supporting the large genome constraint hypothesis. Climate was shown to exert a strong influence on genome size distribution along the global latitudinal gradient, while the frequency of polyploidy and the type of growth form had negligible effects. In contrast to the unimodal patterns along the global latitudinal gradient shown by plant size traits and polyploid proportions, the increase in angiosperm genome size from the equator to 40-50°N/S is probably mediated by different (mostly climatic) mechanisms than the decrease in genome sizes observed from 40 to 50°N northward. Our analysis suggests that the global distribution of genome sizes in angiosperms is mainly shaped by climatically mediated purifying selection, genetic drift, relaxed selection, and environmental filtering.


Asunto(s)
Magnoliopsida , Magnoliopsida/genética , Tamaño del Genoma , Genoma de Planta , Poliploidía , Plantas/genética , Filogenia
3.
Ann Bot ; 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39196767

RESUMEN

BACKGROUND: Genome size is influenced by natural selection and genetic drift acting on variations from polyploidy and repetitive DNA sequences. We hypothesized that centromere drive, where centromeres compete for inclusion in the functional gamete during meiosis, may also affect genome and chromosome size. This competition occurs in asymmetric meiosis, where only one of the four meiotic products becomes a gamete. If centromere drive influences chromosome size evolution, it may also impact post-polyploid diploidization, where a polyploid genome is restructured to function more like a diploid through chromosomal rearrangements, including fusions. We tested if plant lineages with asymmetric meiosis exhibit faster chromosome size evolution compared to those with only symmetric meiosis, which lack centromere drive as all four meiotic products become gametes. We also examined if positive selection on centromeric histone H3 (CENH3), a protein that can suppress centromere drive, is more frequent in these asymmetric lineages. METHODS: We analyzed plant groups with different meiotic modes: asymmetric in gymnosperms and angiosperms, and symmetric in bryophytes, lycophytes, and ferns. We selected species based on available CENH3 gene sequences and chromosome size data. Using Ornstein-Uhlenbeck evolutionary models and phylogenetic regressions, we assessed the rates of chromosome size evolution and the frequency of positive selection on CENH3 in these clades. RESULTS: Our analyses showed that clades with asymmetric meiosis have a higher frequency of positive selection on CENH3 and increased rates of chromosome size evolution compared to symmetric clades. CONCLUSIONS: Our findings support the hypothesis that centromere drive accelerates chromosome and genome size evolution, potenatially also influencing the process of post-polyploid diploidization. We propose a model which in a single famework helps explain the stability of chromosome size in symmetric lineages (bryophytes, lycophytes, and ferns) and its variability in asymmetric lineages (gymnosperms and angiosperms), providing a foundation for future research in plant genome evolution.

4.
Ann Bot ; 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39012023

RESUMEN

BACKGROUND: Species of the carnivorous family Lentibulariaceae exhibit the smallest genomes in flowering plants. We explored the hypothesis that their minute genomes result from the unique mitochondrial cytochrome c oxidase (COX) mutation. The mutation may boost mitochondrial efficiency, which is especially useful for suction-bladder traps of Utricularia, but also increase DNA-damaging reactive oxygen species, leading to genome shrinkage through deletion-biased DNA repair. We aimed to explore this mutation's impact on genome size, providing insights into genetic mutation roles in plant genome evolution under environmental pressures. METHODS: We compiled and measured genome and mean chromosome sizes for 127 and 67 species, respectively, representing all three genera (Genlisea, Pinguicula, and Utricularia) of Lentibulariaceae. We also isolated and analyzed COX sequences to detect the mutation. Through phylogenetic regressions and Ornstein-Uhlenbeck models of trait evolution, we assessed the impact of the COX mutation on the genome and chromosome sizes across the family. RESULTS: Our findings reveal significant correlations between the COX mutations and smaller genome and chromosome sizes. Specifically, species carrying the ancestral COX sequence exhibited larger genomes and chromosomes than those with the mutation. This evidence supports the notion that the COX mutation contributes to genome downsizing, with statistical analyses confirming a directional evolution towards smaller genomes in species harboring these mutations. CONCLUSIONS: Our study confirms that the COX mutation in Lentibulariaceae is associated with genome downsizing, likely driven by increased reactive oxygen species production and subsequent DNA damage requiring deletion-biased repair mechanisms. While boosting mitochondrial energy output, this genetic mutation compromises genome integrity and may potentially affect recombination rates, illustrating a complex trade-off between evolutionary advantages and disadvantages. Our results highlight the intricate processes by which genetic mutations and environmental pressures shape genome size evolution in carnivorous plants.

5.
Am J Bot ; 111(8): e16315, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38695147

RESUMEN

PREMISE: Increases in genome size in plants-often associated with larger, low-density stomata and greater water-use efficiency (WUE)-could affect plant ecophysiological and hydraulic function. Variation in plant genome size is often due to polyploidy, having occurred repeatedly in the austral sedge genus Schoenus in the Cape Floristic Region (CFR), while species in the other major schoenoid genus in the region, Tetraria, have smaller genomes. Comparing these genera is useful as they co-occur at the landscape level, under broadly similar bioclimatic conditions. We hypothesized that CFR Schoenus have greater WUE, with lower maximum stomatal conductance (gwmax) imposed by larger, less-dense stomata. METHODS: We investigated relationships between genome size and stomatal parameters in a phylogenetic context, reconstructing a phylogeny of CFR-occurring Schoeneae (Cyperaceae). Species' stomatal and functional traits were measured from field-collected and herbarium specimens. Carbon stable isotopes were used as an index of WUE. Genome size was derived from flow-cytometric measurements of leafy shoots. RESULTS: Evolutionary regressions demonstrated that stomatal size and density covary with genome size, positively and negatively, respectively, with genome size explaining 72-75% of the variation in stomatal size. Larger-genomed species had lower gwmax and C:N ratios, particularly in culms. CONCLUSIONS: We interpret differences in vegetative physiology between the genera as evidence of more-conservative strategies in CFR Schoenus compared to the more-acquisitive Tetraria. Because Schoenus have smaller, reduced leaves, they likely rely more on culm photosynthesis than Tetraria. Across the CFR Schoeneae, ecophysiology correlates with genome size, but confounding sources of trait variation limit inferences about causal relationships between traits.


Asunto(s)
Tamaño del Genoma , Genoma de Planta , Filogenia , Estomas de Plantas , Estomas de Plantas/fisiología , Estomas de Plantas/genética , Cyperaceae/genética , Cyperaceae/fisiología , Agua/fisiología , Hojas de la Planta/fisiología , Hojas de la Planta/genética , Hojas de la Planta/anatomía & histología
6.
BMC Genomics ; 24(1): 363, 2023 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-37380941

RESUMEN

BACKGROUND: Monogenea (Platyhelminthes, Neodermata) are the most species-rich class within the Neodermata superclass of primarily fish parasites. Despite their economic and ecological importance, monogenean research tends to focus on their morphological, phylogenetic, and population characteristics, while comprehensive omics analyses aimed at describing functionally important molecules are few and far between. We present a molecular characterisation of monogenean representative Eudiplozoon nipponicum, an obligate haematophagous parasite infecting the gills of the common carp. We report its nuclear and mitochondrial genomes, present a functional annotation of protein molecules relevant to the molecular and biochemical aspect of physiological processes involved in interactions with the fish hosts, and re-examinate the taxonomic position of Eudiplozoon species within the Diplozoidae family. RESULTS: We have generated 50.81 Gbp of raw sequencing data (Illumina and Oxford Nanopore reads), bioinformatically processed, and de novo assembled them into a genome draft 0.94 Gbp long, consisting of 21,044 contigs (N50 = 87 kbp). The final assembly represents 57% of the estimated total genome size (~ 1.64 Gbp), whereby repetitive and low-complexity regions account for ~ 64% of the assembled length. In total, 36,626 predicted genes encode 33,031 proteins and homology-based annotation of protein-coding genes (PCGs) and proteins characterises 14,785 (44.76%) molecules. We have detected significant representation of functional proteins and known molecular functions. The numbers of peptidases and inhibitors (579 proteins), characterised GO terms (16,016 unique assigned GO terms), and identified KEGG Orthology (4,315 proteins) acting in 378 KEGG pathways demonstrate the variety of mechanisms by which the parasite interacts with hosts on a macromolecular level (immunomodulation, feeding, and development). Comparison between the newly assembled E. nipponicum mitochondrial genome (length of 17,038 bp) and other diplozoid monogeneans confirms the existence of two distinct Eudiplozoon species infecting different fish hosts: Cyprinus carpio and Carassius spp. CONCLUSIONS: Although the amount of sequencing data and characterised molecules of monogenean parasites has recently increased, a better insight into their molecular biology is needed. The E. nipponicum nuclear genome presented here, currently the largest described genome of any monogenean parasite, represents a milestone in the study of monogeneans and their molecules but further omics research is needed to understand these parasites' biological nature.


Asunto(s)
Carpas , Parásitos , Trematodos , Animales , Carpas/genética , Filogenia , Genómica
7.
New Phytol ; 239(1): 399-414, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37167007

RESUMEN

Polyploidy plays an important role in plant evolution, but knowledge of its eco-physiological consequences, such as of the putatively enlarged stomata of polyploid plants, remains limited. Enlarged stomata should disadvantage polyploids at low CO2 concentrations (namely during the Quaternary glacial periods) because larger stomata are viewed as less effective at CO2 uptake. We observed the growth, physiology, and epidermal cell features of 15 diploids and their polyploid relatives cultivated under glacial, present-day, and potential future atmospheric CO2 concentrations (200, 400, and 800 ppm respectively). We demonstrated some well-known polyploidy effects, such as faster growth and larger leaves, seeds, stomata, and other epidermal cells. The stomata of polyploids, however, tended to be more elongated than those of diploids, and contrary to common belief, they had no negative effect on the CO2 uptake capacity of polyploids. Moreover, polyploids grew comparatively better than diploids even at low, glacial CO2 concentrations. Higher polyploids with large genomes also showed increased operational stomatal conductance and consequently, a lower water-use efficiency. Our results point to a possible decrease in growth superiority of polyploids over diploids in a current and future high CO2 climatic scenarios, as well as the possible water and/or nutrient dependency of higher polyploids.


Asunto(s)
Fotosíntesis , Estomas de Plantas , Estomas de Plantas/fisiología , Fotosíntesis/fisiología , Dióxido de Carbono/farmacología , Hojas de la Planta/fisiología , Agua
8.
Ann Bot ; 131(1): 143-156, 2023 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-35226733

RESUMEN

BACKGROUND AND AIMS: It is unclear how widespread polyploidy is throughout the largest holocentric plant family - the Cyperaceae. Because of the prevalence of chromosomal fusions and fissions, which affect chromosome number but not genome size, it can be impossible to distinguish if individual plants are polyploids in holocentric lineages based on chromosome count data alone. Furthermore, it is unclear how differences in genome size and ploidy levels relate to environmental correlates within holocentric lineages, such as the Cyperaceae. METHODS: We focus our analyses on tribe Schoeneae, and more specifically the southern African clade of Schoenus. We examine broad-scale patterns of genome size evolution in tribe Schoeneae and focus more intensely on determining the prevalence of polyploidy across the southern African Schoenus by inferring ploidy level with the program ChromEvol, as well as interpreting chromosome number and genome size data. We further investigate whether there are relationships between genome size/ploidy level and environmental variables across the nutrient-poor and summer-arid Cape biodiversity hotspot. KEY RESULTS: Our results show a large increase in genome size, but not chromosome number, within Schoenus compared to other species in tribe Schoeneae. Across Schoenus, there is a positive relationship between chromosome number and genome size, and our results suggest that polyploidy is a relatively common process throughout the southern African Schoenus. At the regional scale of the Cape, we show that polyploids are more often associated with drier locations that have more variation in precipitation between dry and wet months, but these results are sensitive to the classification of ploidy level. CONCLUSIONS: Polyploidy is relatively common in the southern African Schoenus, where a positive relationship is observed between chromosome number and genome size. Thus, there may be a high incidence of polyploidy in holocentric plants, whose cell division properties differ from monocentrics.


Asunto(s)
Cyperaceae , Cyperaceae/genética , Ploidias , Poliploidía , Cromosomas de las Plantas , Biodiversidad , Genoma de Planta , Filogenia
9.
Cytometry A ; 101(9): 749-781, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-34585818

RESUMEN

Flow cytometry (FCM) is currently the most widely-used method to establish nuclear DNA content in plants. Since simple, 1-3-parameter, flow cytometers, which are sufficient for most plant applications, are commercially available at a reasonable price, the number of laboratories equipped with these instruments, and consequently new FCM users, has greatly increased over the last decade. This paper meets an urgent need for comprehensive recommendations for best practices in FCM for different plant science applications. We discuss advantages and limitations of establishing plant ploidy, genome size, DNA base composition, cell cycle activity, and level of endoreduplication. Applications of such measurements in plant systematics, ecology, molecular biology research, reproduction biology, tissue cultures, plant breeding, and seed sciences are described. Advice is included on how to obtain accurate and reliable results, as well as how to manage troubleshooting that may occur during sample preparation, cytometric measurements, and data handling. Each section is followed by best practice recommendations; tips as to what specific information should be provided in FCM papers are also provided.


Asunto(s)
Plantas , Ploidias , ADN de Plantas/genética , Citometría de Flujo/métodos , Tamaño del Genoma , Genoma de Planta , Plantas/genética
10.
Ann Bot ; 130(1): 77-84, 2022 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-35576011

RESUMEN

BACKGROUND AND AIMS: In eukaryotes, the total kinetochore size (defined as a chromosomal region containing CENH3-positive nucleosomes) per nucleus strongly correlates with genome size, a relationship that has been hypothesized to stem from general intracellular scaling principles. However, if larger chromosomes within a karyotype required larger kinetochores to move properly, it could also be derived from the mechanics of cell division. METHODS: We selected seven species of the plant subfamily Agavoideae whose karyotypes are characterized by the presence of small and very large chromosomes. We visualized the kinetochore regions and chromosomes by immunolabelling with an anti-CENH3 antibody and DAPI (6'-diamidino-2-phenylindole) staining. We then employed 2D widefield and 3D super-resolution microscopy to measure chromosome and kinetochore areas and volumes, respectively. To assess the scaling relationship of kinetochore size to chromosome size inside a karyotype, we log-transformed the data and analysed them with linear mixed models which allowed us to control for the inherent hierarchical structure of the dataset (metaphases within slides and species). KEY RESULTS: We found a positive intra-karyotype relationship between kinetochore and chromosome size. The slope of the regression line of the observed relationship (0.277 for areas, 0.247 for volumes) was very close to the theoretical slope of 0.25 for chromosome width based on the expected physics of chromosome passage through the cytoplasm during cell division. We obtained similar results by reanalysing available data from human and maize. CONCLUSIONS: Our findings suggest that the total kinetochore size to genome size scaling observed across eukaryotes may also originate from the mechanics of cell division. Moreover, the potential causal link between kinetochore and chromosome size indicates that evolutionary mechanisms capable of leading kinetochore size changes to fixation, such as centromere drive, could promote the size evolution of entire chromosomes and genomes.


Asunto(s)
Centrómero , Cinetocoros , Plantas , División Celular , Centrómero/genética , Cariotipo , Cariotipificación
11.
Ann Bot ; 130(7): 999-1014, 2022 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-36342743

RESUMEN

BACKGROUND AND AIMS: While variation in genome size and chromosome numbers and their consequences are often investigated in plants, the biological relevance of variation in chromosome size remains poorly known. Here, we examine genome and mean chromosome size in the cyperid clade (families Cyperaceae, Juncaceae and Thurniaceae), which is the largest vascular plant lineage with predominantly holocentric chromosomes. METHODS: We measured genome size in 436 species of cyperids using flow cytometry, and augment these data with previously published datasets. We then separately compared genome and mean chromosome sizes (2C/2n) amongst the major lineages of cyperids and analysed how these two genomic traits are associated with various environmental factors using phylogenetically informed methods. KEY RESULTS: We show that cyperids have the smallest mean chromosome sizes recorded in seed plants, with a large divergence between the smallest and largest values. We found that cyperid species with smaller chromosomes have larger geographical distributions and that there is a strong inverse association between mean chromosome size and number across this lineage. CONCLUSIONS: The distinct patterns in genome size and mean chromosome size across the cyperids might be explained by holokinetic drive. The numerous small chromosomes might function to increase genetic diversity in this lineage where crossovers are limited during meiosis.


Asunto(s)
Cromosomas de las Plantas , Evolución Molecular , Filogenia , Cromosomas de las Plantas/genética , Tamaño del Genoma , Genoma de Planta/genética
12.
Ann Bot ; 126(5): 883-889, 2020 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-32582956

RESUMEN

BACKGROUND AND AIMS: Ultraviolet-B radiation (UV-B) radiation damages the DNA, cells and photosynthetic apparatus of plants. Plants commonly prevent this damage by synthetizing UV-B-protective compounds. Recent laboratory experiments in Arabidopsis and cucumber have indicated that plants can also respond to UV-B stress with endopolyploidy. Here we test the generality of this response in natural plant populations, considering their monocentric or holocentric chromosomal structure. METHODS: We measured the endopolyploidy index (flow cytometry) and the concentration of UV-B-protective compounds in leaves of 12 herbaceous species (1007 individuals) from forest interiors and neighbouring clearings where they were exposed to increased UV-B radiation (103 forest + clearing populations). We then analysed the data using phylogenetic mixed models. KEY RESULTS: The concentration of UV-B protectives increased with UV-B doses estimated from hemispheric photographs of the sky above sample collection sites, but the increase was more rapid in species with monocentric chromosomes. Endopolyploidy index increased with UV-B doses and with concentrations of UV-B-absorbing compounds only in species with monocentric chromosomes, while holocentric species responded negligibly. CONCLUSIONS: Endopolyploidy seems to be a common response to increased UV-B in monocentric plants. Low sensitivity to UV-B in holocentric species might relate to their success in high-UV-stressed habitats and corroborates the hypothesized role of holocentric chromosomes in plant terrestrialization.


Asunto(s)
Arabidopsis , Cromosomas , Humanos , Filogenia , Hojas de la Planta , Rayos Ultravioleta
13.
Ann Bot ; 126(2): 323-330, 2020 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-32474609

RESUMEN

BACKGROUND AND AIMS: The idea that genome (size) evolution in eukaryotes could be driven by environmental factors is still vigorously debated. In extant plants, genome size correlates positively with stomatal size, leading to the idea that conditions enabling the existence of large stomata in fossil plants also supported growth of their genome size. We test this inductive assumption in drought-adapted, prostrate-leaved Cape (South Africa) geophytes where, compared with their upright-leaved geophytic ancestors, stomata develop in a favourably humid microclimate formed underneath their leaves. METHODS: Stomatal parameters (leaf cuticle imprints) and genome size (flow cytometry) were measured in 16 closely related geophytic species pairs from seven plant families. In each pair, representing a different genus, we contrasted a prostrate-leaved species with its upright-leaved phylogenetic relative, the latter whose stomata are exposed to the ambient arid climate. KEY RESULTS: Except for one, all prostrate-leaves species had larger stomata, and in 13 of 16 pairs they also had larger genomes than their upright-leaved relatives. Stomatal density and theoretical maximum conductance were less in prostrate-leaved species with small guard cells (<1 pL) but showed no systematic difference in species pairs with larger guard cells (>1 pL). Giant stomata were observed in the prostrate-leaved Satyrium bicorne (89-137 µm long), despite its relatively small genome (2C = 9 Gbp). CONCLUSIONS: Our results imply that climate, through selection on stomatal size, might be able to drive genome size evolution in plants. The data support the idea that plants from 'greenhouse' geological periods with large stomata might have generally had larger genome sizes when compared with extant plants, though this might not have been solely due to higher atmospheric CO2 in these periods but could also have been due to humid conditions prevailing at fossil deposit sites.


Asunto(s)
Genoma de Planta/genética , Estomas de Plantas/genética , Tamaño del Genoma , Filogenia , Hojas de la Planta , Sudáfrica
14.
Am J Bot ; 107(9): 1253-1259, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32882073

RESUMEN

PREMISE: As repeatedly shown, the remarkable variation in the genome size of angiosperms can be shaped by extrinsic selective pressures, including nutrient availability. Carnivory has evolved independently in 10 angiosperm clades, but all carnivorous plants share a common affinity to nutrient-poor habitats. As such, carnivory and genome reduction could be responses to the same environmental pressure. Indeed, the smallest genomes among flowering plants are found in the carnivorous family Lentibulariaceae, where a unique mutation in cytochrome c oxidase (COX) is suspected to promote genome miniaturization. Despite these hypotheses, a phylogenetically informed test of genome size and nutrient availability across carnivorous clades has so far been missing. METHODS: Using linear mixed models, we compared genome sizes of 127 carnivorous plants from 7 diverse angiosperm clades with 1072 of their noncarnivorous relatives. We also tested whether genome size in Lentibulariaceae reflects the presence of the COX mutation. RESULTS: The genome sizes of carnivorous plants do not differ significantly from those of their noncarnivorous relatives. Based on available data, no significant association between the COX mutation and genome miniaturization could be confirmed, not even when considering polyploidy. CONCLUSIONS: Carnivory alone does not seem to significantly affect genome size decrease. Plausibly, it might actually counterbalance the effect of nutrient limitation on genome size evolution. The role of the COX mutation in genome miniaturization needs to be evaluated by analysis of a broader data set because current knowledge of its presence across Lentibulariaceae covers less than 10% of the species diversity in this family.


Asunto(s)
Carnivoría , Magnoliopsida/genética , Tamaño del Genoma , Genoma de Planta , Humanos , Filogenia , Poliploidía
15.
Ann Bot ; 121(1): 9-16, 2018 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-29069342

RESUMEN

Background: The dispersed occurrence of holocentric chromosomes across eukaryotes implies they are adaptive, but the conditions under which they confer an advantage over monocentric chromosomes remain unclear. Due to their extended kinetochore and the attachment of spindle microtubules along their entire length, holocentric chromosomes tolerate fragmentation; hence, they may be advantageous in times of exposure to factors that cause chromosomal fragmentation (clastogens). Scope: It is shown that holocentric organisms may, indeed, thrive better than monocentric organisms under clastogenic conditions and that such conditions of various duration and intensity have occurred many times throughout the history of Earth's biota. One of the most important clastogenic events in eukaryotic history, in which holocentric chromosomes may have played the key role, was the colonization of land by plants and animals half a billion years ago. In addition to arguments supporting the anticlastogenic hypothesis of holocentric chromosomes and a discussion of its evolutionary consequences, experiments and analyses are proposed to explore this hypothesis in more depth. Conclusions: It is argued that the tolerance to clastogens explains the origin of holocentric lineages and may also have far-reaching consequences for eukaryotic evolution in general as exemplified by the potential role of holocentric chromosomes in terrestrialization.


Asunto(s)
Evolución Biológica , Cromosomas , Animales , Centrómero/fisiología , Cromosomas/fisiología , Cromosomas de las Plantas , Eucariontes/genética , Mutación , Selección Genética/genética
17.
Ann Bot ; 119(3): 409-416, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28025291

RESUMEN

BACKGROUND AND AIMS: Studies in the carnivorous family Lentibulariaceae in the last years resulted in the discovery of the smallest plant genomes and an unusual pattern of genomic GC content evolution. However, scarcity of genomic data in other carnivorous clades still prevents a generalization of the observed patterns. Here the aim was to fill this gap by mapping genome evolution in the second largest carnivorous family, Droseraceae, where this evolution may be affected by chromosomal holokinetism in Drosera METHODS: The genome size and genomic GC content of 71 Droseraceae species were measured by flow cytometry. A dated phylogeny was constructed, and the evolution of both genomic parameters and their relationship to species climatic niches were tested using phylogeny-based statistics. KEY RESULTS: The 2C genome size of Droseraceae varied between 488 and 10 927 Mbp, and the GC content ranged between 37·1 and 44·7 %. The genome sizes and genomic GC content of carnivorous and holocentric species did not differ from those of their non-carnivorous and monocentric relatives. The genomic GC content positively correlated with genome size and annual temperature fluctuations. The genome size and chromosome numbers were inversely correlated in the Australian clade of Drosera CONCLUSIONS: Our results indicate that neither carnivory (nutrient scarcity) nor the holokinetism have a prominent effect on size and DNA base composition of Droseraceae genomes. However, the holokinetic drive seems to affect karyotype evolution in one of the major clades of Drosera Our survey confirmed that the evolution of GC content is tightly connected with the evolution of genome size and also with environmental conditions.


Asunto(s)
Evolución Biológica , Droseraceae/genética , Genoma de Planta/genética , Composición de Base/genética , Carnivoría , Cromosomas de las Plantas/genética , Variación Genética/genética , Filogenia
18.
Proc Natl Acad Sci U S A ; 111(39): E4096-102, 2014 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-25225383

RESUMEN

Genomic DNA base composition (GC content) is predicted to significantly affect genome functioning and species ecology. Although several hypotheses have been put forward to address the biological impact of GC content variation in microbial and vertebrate organisms, the biological significance of GC content diversity in plants remains unclear because of a lack of sufficiently robust genomic data. Using flow cytometry, we report genomic GC contents for 239 species representing 70 of 78 monocot families and compare them with genomic characters, a suite of life history traits and climatic niche data using phylogeny-based statistics. GC content of monocots varied between 33.6% and 48.9%, with several groups exceeding the GC content known for any other vascular plant group, highlighting their unusual genome architecture and organization. GC content showed a quadratic relationship with genome size, with the decreases in GC content in larger genomes possibly being a consequence of the higher biochemical costs of GC base synthesis. Dramatic decreases in GC content were observed in species with holocentric chromosomes, whereas increased GC content was documented in species able to grow in seasonally cold and/or dry climates, possibly indicating an advantage of GC-rich DNA during cell freezing and desiccation. We also show that genomic adaptations associated with changing GC content might have played a significant role in the evolution of the Earth's contemporary biota, such as the rise of grass-dominated biomes during the mid-Tertiary. One of the major selective advantages of GC-rich DNA is hypothesized to be facilitating more complex gene regulation.


Asunto(s)
ADN de Plantas/química , ADN de Plantas/genética , Evolución Molecular , Magnoliopsida/genética , Aclimatación/genética , Composición de Base , Cromosomas de las Plantas/genética , Ecosistema , Variación Genética , Genoma de Planta , Magnoliopsida/química , Magnoliopsida/clasificación , Filogenia , Poaceae/química , Poaceae/clasificación , Poaceae/genética
20.
Ann Bot ; 118(7): 1347-1352, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27616209

RESUMEN

BACKGROUND AND AIMS: The centromere drive theory explains diversity of eukaryotic centromeres as a consequence of the recurrent conflict between centromeric repeats and centromeric histone H3 (CenH3), in which selfish centromeres exploit meiotic asymmetry and CenH3 evolves adaptively to counterbalance deleterious consequences of driving centromeres. Accordingly, adaptively evolving CenH3 has so far been observed only in eukaryotes with asymmetric meiosis. However, if such evolution is a consequence of centromere drive, it should depend not only on meiotic asymmetry but also on monocentric or holokinetic chromosomal structure. Selective pressures acting on CenH3 have never been investigated in organisms with holokinetic meiosis despite the fact that holokinetic chromosomes have been hypothesized to suppress centromere drive. Therefore, the present study evaluates selective pressures acting on the CenH3 gene in holokinetic organisms for the first time, specifically in the representatives of the plant genus Luzula (Juncaceae), in which the kinetochore formation is not co-localized with any type of centromeric repeat. METHODS: PCR, cloning and sequencing, and database searches were used to obtain coding CenH3 sequences from Luzula species. Codon substitution models were employed to infer selective regimes acting on CenH3 in Luzula KEY RESULTS: In addition to the two previously published CenH3 sequences from L. nivea, 16 new CenH3 sequences have been isolated from 12 Luzula species. Two CenH3 isoforms in Luzula that originated by a duplication event prior to the divergence of analysed species were found. No signs of positive selection acting on CenH3 in Luzula were detected. Instead, evidence was found that selection on CenH3 of Luzula might have been relaxed. CONCLUSIONS: The results indicate that holokinetism itself may suppress centromere drive and, therefore, holokinetic chromosomes might have evolved as a defence against centromere drive.


Asunto(s)
Centrómero/genética , Cromosomas de las Plantas/genética , Histonas/genética , Magnoliopsida/genética , Selección Genética/genética , Genoma de Planta/genética , Meiosis/genética , Filogenia , Alineación de Secuencia , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA