Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Nat Rev Mol Cell Biol ; 25(1): 46-64, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37710009

RESUMEN

The forkhead box protein O (FOXO, consisting of FOXO1, FOXO3, FOXO4 and FOXO6) transcription factors are the mammalian orthologues of Caenorhabditis elegans DAF-16, which gained notoriety for its capability to double lifespan in the absence of daf-2 (the gene encoding the worm insulin receptor homologue). Since then, research has provided many mechanistic details on FOXO regulation and FOXO activity. Furthermore, conditional knockout experiments have provided a wealth of data as to how FOXOs control development and homeostasis at the organ and organism levels. The lifespan-extending capabilities of DAF-16/FOXO are highly correlated with their ability to induce stress response pathways. Exogenous and endogenous stress, such as cellular redox stress, are considered the main drivers of the functional decline that characterizes ageing. Functional decline often manifests as disease, and decrease in FOXO activity indeed negatively impacts on major age-related diseases such as cancer and diabetes. In this context, the main function of FOXOs is considered to preserve cellular and organismal homeostasis, through regulation of stress response pathways. Paradoxically, the same FOXO-mediated responses can also aid the survival of dysfunctional cells once these eventually emerge. This general property to control stress responses may underlie the complex and less-evident roles of FOXOs in human lifespan as opposed to model organisms such as C. elegans.


Asunto(s)
Caenorhabditis elegans , Transducción de Señal , Animales , Humanos , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Transducción de Señal/genética , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Envejecimiento/genética , Longevidad/genética , Mamíferos/metabolismo
2.
Mol Cell ; 83(22): 4141-4157.e11, 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-37977121

RESUMEN

Biomolecular condensates have emerged as a major organizational principle in the cell. However, the formation, maintenance, and dissolution of condensates are still poorly understood. Transcriptional machinery partitions into biomolecular condensates at key cell identity genes to activate these. Here, we report a specific perturbation of WNT-activated ß-catenin condensates that disrupts oncogenic signaling. We use a live-cell condensate imaging method in human cancer cells to discover FOXO and TCF-derived peptides that specifically inhibit ß-catenin condensate formation on DNA, perturb nuclear ß-catenin condensates in cells, and inhibit ß-catenin-driven transcriptional activation and colorectal cancer cell growth. We show that these peptides compete with homotypic intermolecular interactions that normally drive condensate formation. Using this framework, we derive short peptides that specifically perturb condensates and transcriptional activation of YAP and TAZ in the Hippo pathway. We propose a "monomer saturation" model in which short interacting peptides can be used to specifically inhibit condensate-associated transcription in disease.


Asunto(s)
Neoplasias , beta Catenina , Humanos , beta Catenina/genética , beta Catenina/metabolismo , Transducción de Señal , Vía de Señalización Hippo , Péptidos/genética
3.
Nat Rev Mol Cell Biol ; 14(2): 83-97, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23325358

RESUMEN

Forkhead box O (FOXO) transcription factors are involved in the regulation of the cell cycle, apoptosis and metabolism. In model organisms, FOXO activity also affects stem cell maintenance and lifespan as well as age-related diseases, such as cancer and diabetes. Multiple upstream pathways regulate FOXO activity through post-translational modifications and nuclear-cytoplasmic shuttling of both FOXO and its regulators. The diversity of this upstream regulation and the downstream effects of FOXOs suggest that they function as homeostasis regulators to maintain tissue homeostasis over time and coordinate a response to environmental changes, including growth factor deprivation, metabolic stress (starvation) and oxidative stress.


Asunto(s)
Factores de Transcripción Forkhead/fisiología , Homeostasis/genética , Factores de Transcripción Forkhead/química , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Homeostasis/fisiología , Humanos , Modelos Biológicos , Estrés Oxidativo/genética , Estrés Oxidativo/fisiología , Procesamiento Proteico-Postraduccional/fisiología , Transducción de Señal/genética , Estrés Fisiológico/genética , Estrés Fisiológico/fisiología , Relación Estructura-Actividad
4.
Nature ; 543(7645): 424-427, 2017 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-28273069

RESUMEN

The small intestinal epithelium self-renews every four or five days. Intestinal stem cells (Lgr5+ crypt base columnar cells (CBCs)) sustain this renewal and reside between terminally differentiated Paneth cells at the bottom of the intestinal crypt. Whereas the signalling requirements for maintaining stem cell function and crypt homeostasis have been well studied, little is known about how metabolism contributes to epithelial homeostasis. Here we show that freshly isolated Lgr5+ CBCs and Paneth cells from the mouse small intestine display different metabolic programs. Compared to Paneth cells, Lgr5+ CBCs display high mitochondrial activity. Inhibition of mitochondrial activity in Lgr5+ CBCs or inhibition of glycolysis in Paneth cells strongly affects stem cell function, as indicated by impaired organoid formation. In addition, Paneth cells support stem cell function by providing lactate to sustain the enhanced mitochondrial oxidative phosphorylation in the Lgr5+ CBCs. Mechanistically, we show that oxidative phosphorylation stimulates p38 MAPK activation by mitochondrial reactive oxygen species signalling, thereby establishing the mature crypt phenotype. Together, our results reveal a critical role for the metabolic identity of Lgr5+ CBCs and Paneth cells in supporting optimal stem cell function, and we identify mitochondria and reactive oxygen species signalling as a driving force of cellular differentiation.


Asunto(s)
Autorrenovación de las Células , Mucosa Intestinal/citología , Mucosa Intestinal/metabolismo , Intestino Delgado/citología , Intestino Delgado/metabolismo , Células Madre/citología , Animales , Diferenciación Celular , Medios de Cultivo Condicionados/química , Medios de Cultivo Condicionados/farmacología , Glucólisis , Homeostasis , Ácido Láctico/metabolismo , Ratones , Mitocondrias/metabolismo , Organoides/citología , Organoides/efectos de los fármacos , Organoides/metabolismo , Fosforilación Oxidativa , Células de Paneth/citología , Células de Paneth/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal , Células Madre/fisiología , Proteína Wnt3A/farmacología , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
5.
Mol Cell ; 49(4): 730-42, 2013 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-23333309

RESUMEN

Forkhead box O (FOXO; DAF-16 in worms) transcription factors, which are of vital importance in cell-cycle control, stress resistance, tumor suppression, and organismal lifespan, are largely regulated through nucleo-cytoplasmic shuttling. Insulin signaling keeps FOXO/DAF-16 cytoplasmic, and hence transcriptionally inactive. Conversely, as in loss of insulin signaling, reactive oxygen species (ROS) can activate FOXO/DAF-16 through nuclear accumulation. How ROS regulate the nuclear translocation of FOXO/DAF-16 is largely unknown. Cysteine oxidation can stabilize protein-protein interactions through the formation of disulfide-bridges when cells encounter ROS. Using a proteome-wide screen that identifies ROS-induced mixed disulfide-dependent complexes, we discovered several interaction partners of FOXO4, one of which is the nuclear import receptor transportin-1. We show that disulfide formation with transportin-1 is required for nuclear localization and the activation of FOXO4/DAF-16 induced by ROS, but not by the loss of insulin signaling. This molecular mechanism for nuclear shuttling is conserved in C. elegans and directly connects redox signaling to the longevity protein FOXO/DAF-16.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Factores de Transcripción/metabolismo , beta Carioferinas/metabolismo , Transporte Activo de Núcleo Celular , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Animales , Caenorhabditis elegans/citología , Proteínas de Ciclo Celular , Núcleo Celular/metabolismo , Cistina/metabolismo , Factores de Transcripción Forkhead , Células HEK293 , Humanos , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Oxidación-Reducción , Unión Proteica , Especies Reactivas de Oxígeno/metabolismo , Factores de Transcripción/genética , beta Carioferinas/fisiología
6.
J Biol Chem ; 294(4): 1128-1141, 2019 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-30530489

RESUMEN

Lysine methylation is an important post-translational modification that is also present on mitochondrial proteins, but the mitochondrial lysine-specific methyltransferases (KMTs) responsible for modification are in most cases unknown. Here, we set out to determine the function of human family with sequence similarity 173 member B (FAM173B), a mitochondrial methyltransferase (MTase) reported to promote chronic pain. Using bioinformatics analyses and biochemical assays, we found that FAM173B contains an atypical, noncleavable mitochondrial targeting sequence responsible for its localization to mitochondria. Interestingly, CRISPR/Cas9-mediated KO of FAM173B in mammalian cells abrogated trimethylation of Lys-43 in ATP synthase c-subunit (ATPSc), a modification previously reported as ubiquitous among metazoans. ATPSc methylation was restored by complementing the KO cells with enzymatically active human FAM173B or with a putative FAM173B orthologue from the nematode Caenorhabditis elegans Interestingly, lack of Lys-43 methylation caused aberrant incorporation of ATPSc into the ATP synthase complex and resulted in decreased ATP-generating ability of the complex, as well as decreased mitochondrial respiration. In summary, we have identified FAM173B as the long-sought KMT responsible for methylation of ATPSc, a key protein in cellular ATP production, and have demonstrated functional significance of ATPSc methylation. We suggest renaming FAM173B to ATPSc-KMT (gene name ATPSCKMT).


Asunto(s)
N-Metiltransferasa de Histona-Lisina/metabolismo , Lisina/metabolismo , Mitocondrias/enzimología , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Animales , Línea Celular , Biología Computacional , Células HeLa , N-Metiltransferasa de Histona-Lisina/deficiencia , N-Metiltransferasa de Histona-Lisina/genética , Humanos , Metilación , Ratones , Mitocondrias/metabolismo
7.
Rheumatology (Oxford) ; 58(12): 2305-2314, 2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31131409

RESUMEN

OBJECTIVE: A considerable body of evidence supports a role for type-I IFN in the pathogenesis of primary SS (pSS). As plasmacytoid dendritic cells (pDCs) are a major source of type-I IFN, we investigated their molecular regulation by measuring expression of a large set of miRNAs. METHODS: pDCs were isolated from peripheral blood of pSS patients (n = 30) and healthy controls (n = 16) divided into two independent cohorts (discovery and replication). Screening of 758 miRNAs was assessed by an OpenArray quantitative PCR-based technique; replication of a set of identified miRNAs was performed by custom array. Functional annotation of miRNA targets was performed using pathway enrichment. Novel targets of miR-29a and miR-29c were identified using a proteomic approach (stable isotope labelling with amino acids in cell culture). RESULTS: In the discovery cohort, 20 miRNAs were differentially expressed in pSS pDCs compared with healthy control pDCs. Of these, differential expression of 10 miRNAs was confirmed in the replication cohort. The dysregulated miRNAs were involved in phosphoinositide 3-kinase-Ak strain transforming and mammalian target of rapamycin signalling, as well as regulation of cell death. In addition, a set of novel protein targets of miR-29a and miR-29c were identified, including five targets that were regulated by both miRs. CONCLUSION: The dysregulated miRNome in pDCs of patients with pSS is associated with aberrant regulation of processes at the centre of pDC function, including type-I IFN production and cell death. As miR-29a and miR-29c are pro-apoptotic factors and several of the novel targets identified here are regulators of apoptosis, their downregulation in patients with pSS is associated with enhanced pDC survival.


Asunto(s)
Células Dendríticas/metabolismo , Regulación de la Expresión Génica , MicroARNs/genética , Síndrome de Sjögren/genética , Adulto , Anciano , Células Cultivadas , Células Dendríticas/patología , Regulación hacia Abajo , Femenino , Humanos , Masculino , MicroARNs/biosíntesis , Persona de Mediana Edad , Proteómica/métodos , ARN/genética , Transducción de Señal , Síndrome de Sjögren/metabolismo , Síndrome de Sjögren/patología
8.
Gastroenterology ; 152(6): 1462-1476.e10, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28130067

RESUMEN

BACKGROUND & AIMS: The nuclear receptor subfamily 1 group H member 4 (NR1H4 or farnesoid X receptor [FXR]) regulates bile acid synthesis, transport, and catabolism. FXR also regulates postprandial lipid and glucose metabolism. We performed quantitative proteomic analyses of liver tissues from mice to evaluate these functions and investigate whether FXR regulates amino acid metabolism. METHODS: To study the role of FXR in mouse liver, we used mice with a disruption of Nr1h4 (FXR-knockout mice) and compared them with floxed control mice. Mice were gavaged with the FXR agonist obeticholic acid or vehicle for 11 days. Proteome analyses, as well as targeted metabolomics and chromatin immunoprecipitation, were performed on the livers of these mice. Primary rat hepatocytes were used to validate the role of FXR in amino acid catabolism by gene expression and metabolomics studies. Finally, control mice and mice with liver-specific disruption of Nr1h4 (liver FXR-knockout mice) were re-fed with a high-protein diet after 6 hours fasting and gavaged a 15NH4Cl tracer. Gene expression and the metabolome were studied in the livers and plasma from these mice. RESULTS: In livers of control mice and primary rat hepatocytes, activation of FXR with obeticholic acid increased expression of proteins that regulate amino acid degradation, ureagenesis, and glutamine synthesis. We found FXR to bind to regulatory sites of genes encoding these proteins in control livers. Liver tissues from FXR-knockout mice had reduced expression of urea cycle proteins, and accumulated precursors of ureagenesis, compared with control mice. In liver FXR-knockout mice on a high-protein diet, the plasma concentration of newly formed urea was significantly decreased compared with controls. In addition, liver FXR-knockout mice had reduced hepatic expression of enzymes that regulate ammonium detoxification compared with controls. In contrast, obeticholic acid increased expression of genes encoding enzymes involved in ureagenesis compared with vehicle in C57Bl/6 mice. CONCLUSIONS: In livers of mice, FXR regulates amino acid catabolism and detoxification of ammonium via ureagenesis and glutamine synthesis. Failure of the urea cycle and hyperammonemia are common in patients with acute and chronic liver diseases; compounds that activate FXR might promote ammonium clearance in these patients.


Asunto(s)
Amoníaco/metabolismo , Glutamina/biosíntesis , Hígado/metabolismo , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Urea/metabolismo , Animales , Ácidos y Sales Biliares/metabolismo , Ácido Quenodesoxicólico/análogos & derivados , Ácido Quenodesoxicólico/farmacología , Proteínas en la Dieta/administración & dosificación , Expresión Génica , Hepatocitos , Hígado/enzimología , Masculino , Metaboloma , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteoma , Ratas , Ratas Wistar , Receptores Citoplasmáticos y Nucleares/antagonistas & inhibidores
9.
EMBO Rep ; 16(4): 456-66, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25648147

RESUMEN

FOXO transcription factors are considered bona fide tumor suppressors; however, recent studies showed FOXOs are also required for tumor survival. Here, we identify FOXOs as transcriptional activators of IDH1. FOXOs promote IDH1 expression and thereby maintain the cytosolic levels of α-ketoglutarate and NADPH. In cancer cells carrying mutant IDH1, FOXOs likewise stimulate mutant IDH1 expression and maintain the levels of the oncometabolite 2-hydroxyglutarate, which stimulates cancer cell proliferation and inhibits TET enzymes and histone demethylases. Combined, our data provide a new paradigm for the paradoxical role of FOXOs in both tumor suppression and promotion.


Asunto(s)
Factores de Transcripción Forkhead/metabolismo , Regulación Neoplásica de la Expresión Génica , Isocitrato Deshidrogenasa/metabolismo , Factores de Transcripción/metabolismo , Sitios de Unión , Proteínas de Ciclo Celular , Línea Celular , Proliferación Celular , Ciclo del Ácido Cítrico/genética , Activación Enzimática , Células Epiteliales/citología , Células Epiteliales/metabolismo , Proteína Forkhead Box O1 , Proteína Forkhead Box O3 , Factores de Transcripción Forkhead/genética , Glutaratos/metabolismo , Células HeLa , Histona Demetilasas/genética , Histona Demetilasas/metabolismo , Humanos , Intrones , Isocitrato Deshidrogenasa/genética , Ácidos Cetoglutáricos/metabolismo , NADP/metabolismo , Unión Proteica , Transducción de Señal , Factores de Transcripción/genética , Transcripción Genética
10.
Biochem J ; 469(2): 289-98, 2015 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-25990325

RESUMEN

Activity of FOXO (forkhead box O) transcription factors is inhibited by growth factor-PI3K (phosphoinositide 3-kinase)-PKB (protein kinase B)/Akt signalling to control a variety of cellular processes including cell cycle progression. Through comparative analysis of a number of microarray datasets we identified a set of genes commonly regulated by FOXO proteins and PI3K-PKB/Akt, which includes CTDSP2 (C-terminal domain small phosphatase 2). We validated CTDSP2 as a genuine FOXO target gene and show that ectopic CTDSP2 can induce cell cycle arrest. We analysed transcriptional regulation after CTDSP2 expression and identified extensive regulation of genes involved in cell cycle progression, which depends on the phosphatase activity of CTDSP2. The most notably regulated gene is the CDK (cyclin-dependent kinase) inhibitor p21(Cip1/Waf1) and in the present study we show that p21(Cip1/Waf1) is partially responsible for the cell cycle arrest through decreasing cyclin-CDK activity. Our data suggest that CTDSP2 induces p21(Cip1/Waf1) through increasing the activity of Ras. As has been described previously, Ras induces p21(Cip1/Waf1) through p53-dependent and p53-independent pathways and indeed both p53 and MEK inhibition can mitigate the CTDSP2-induced p21(Cip1/Waf1) mRNA up-regulation. In support of Ras activation by CTDSP2, depletion of endogenous CTDSP2 results in reduced Ras activity and thus CTDSP2 seems to be part of a larger set of genes regulated by FOXO proteins, which increase growth factor signalling upon FOXO activation.


Asunto(s)
Puntos de Control del Ciclo Celular/fisiología , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Factores de Transcripción Forkhead/metabolismo , Proteínas Nucleares/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Proteínas ras/metabolismo , Animales , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Factores de Transcripción Forkhead/genética , Regulación de la Expresión Génica/fisiología , Células HEK293 , Humanos , Ratones , Ratones Noqueados , Células 3T3 NIH , Proteínas Nucleares/genética , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfoproteínas Fosfatasas/genética , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transcripción Genética/fisiología , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Proteínas ras/genética
11.
Biochem J ; 460(1): 25-34, 2014 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-24762137

RESUMEN

Growth factors inactivate the FOXO (forkhead box O) transcription factors through PI3K (phosphoinositide 3-kinase) and PKB (protein kinase B). By comparing microarray data from multiple model systems, we identified HBP1 (high-mobility group-box protein 1) as a novel downstream target of this pathway. HBP1 mRNA was down-regulated by PDGF (platelet-derived growth factor), FGF (fibroblast growth factor), PI3K and PKB, whereas it was up-regulated by FOXO factors. This observation was confirmed in human and murine fibroblasts as well as in cell lines derived from leukaemia, breast adenocarcinoma and colon carcinoma. Bioinformatics analysis led to the identification of a conserved consensus FOXO-binding site in the HBP1 promoter. By luciferase activity assay and ChIP, we demonstrated that FOXO bound to this site and regulated the HBP1 promoter activity in a PI3K-dependent manner. Silencing of HBP1 by shRNA increased the proliferation of human fibroblasts in response to growth factors, suggesting that HBP1 limits cell growth. Finally, by analysing a transcriptomics dataset from The Cancer Genome Atlas, we observed that HBP1 expression was lower in breast tumours that had lost FOXO expression. In conclusion, HBP1 is a novel target of the PI3K/FOXO pathway and controls cell proliferation in response to growth factors.


Asunto(s)
Regulación hacia Abajo/genética , Factores de Transcripción Forkhead/genética , Regulación Neoplásica de la Expresión Génica , Proteínas del Grupo de Alta Movilidad/antagonistas & inhibidores , Proteínas del Grupo de Alta Movilidad/genética , Péptidos y Proteínas de Señalización Intercelular/genética , Fosfatidilinositol 3-Quinasa/genética , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Represoras/antagonistas & inhibidores , Proteínas Represoras/genética , Animales , Células CHO , Células Cultivadas , Secuencia Conservada , Cricetinae , Cricetulus , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Proteína Forkhead Box O1 , Factores de Transcripción Forkhead/biosíntesis , Células HEK293 , Proteínas del Grupo de Alta Movilidad/biosíntesis , Humanos , Células MCF-7 , Masculino , Ratones , Células 3T3 NIH , Fosfatidilinositol 3-Quinasa/biosíntesis , Regiones Promotoras Genéticas , Unión Proteica/genética , Proteínas Proto-Oncogénicas c-akt/biosíntesis , Proteínas Represoras/biosíntesis , Transducción de Señal/genética
12.
Nat Rev Immunol ; 4(11): 889-99, 2004 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-15516968

RESUMEN

It is more than a decade since the discovery of the first forkhead-box (FOX) transcription factor in the fruit fly Drosophila melanogaster. In the intervening time, there has been an explosion in the identification and characterization of members of this family of proteins. Importantly, in the past few years, it has become clear that members of the FOX family have crucial roles in various aspects of immune regulation, from lymphocyte survival to thymic development. This review focuses on FOXP3, FOXN1, FOXJ1 and members of the FOXO subfamily and their function in the immune system.


Asunto(s)
Proteínas de Unión al ADN/inmunología , Sistema Inmunológico/fisiología , Transactivadores/inmunología , Factores de Transcripción/inmunología , Animales , Factores de Transcripción Forkhead , Humanos , Sistema Inmunológico/inmunología , Activación de Linfocitos/inmunología , Ratones , Linfocitos T Colaboradores-Inductores/inmunología , Timo/embriología , Timo/inmunología
13.
J Biol Chem ; 288(30): 21729-41, 2013 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-23770673

RESUMEN

FOXO (forkhead box O) transcription factors are tumor suppressors and increase the life spans of model organisms. Cellular stress, in particular oxidative stress caused by an increase in levels of reactive oxygen species (ROS), activates FOXOs through JNK-mediated phosphorylation. Importantly, JNK regulation of FOXO is evolutionarily conserved. Here we identified the pathway that mediates ROS-induced JNK-dependent FOXO regulation. Following increased ROS, RALA is activated by the exchange factor RLF (RalGDS-like factor), which is in complex with JIP1 (C-Jun-amino-terminal-interacting protein 1) and JNK. Active RALA consequently regulates assembly and activation of MLK3, MKK4, and JNK onto the JIP1 scaffold. Furthermore, regulation of FOXO by RALA and JIP1 is conserved in C. elegans, where both ral-1 and jip-1 depletion impairs heat shock-induced nuclear translocation of the FOXO orthologue DAF16.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteína Quinasa 8 Activada por Mitógenos/metabolismo , Factores de Transcripción/metabolismo , Proteínas de Unión al GTP ral/metabolismo , Transporte Activo de Núcleo Celular , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Western Blotting , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Ciclo Celular , Núcleo Celular/metabolismo , Activación Enzimática , Factores de Transcripción Forkhead , Células HEK293 , Humanos , Quinasas Quinasa Quinasa PAM/genética , Quinasas Quinasa Quinasa PAM/metabolismo , Ratones , Proteína Quinasa 8 Activada por Mitógenos/genética , Mutación , Células 3T3 NIH , Interferencia de ARN , Especies Reactivas de Oxígeno/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Transcripción/genética , Proteínas de Unión al GTP ral/genética
14.
Mol Syst Biol ; 9: 638, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23340844

RESUMEN

Forkhead box O (FOXO) transcription factors are key players in diverse cellular processes affecting tumorigenesis, stem cell maintenance and lifespan. To gain insight into the mechanisms of FOXO-regulated target gene expression, we studied genome-wide effects of FOXO3 activation. Profiling RNA polymerase II changes shows that FOXO3 regulates gene expression through transcription initiation. Correlative analysis of FOXO3 and RNA polymerase II ChIP-seq profiles demonstrates FOXO3 to act as a transcriptional activator. Furthermore, this analysis reveals a significant part of FOXO3 gene regulation proceeds through enhancer regions. FOXO3 binds to pre-existing enhancers and further activates these enhancers as shown by changes in histone acetylation and RNA polymerase II recruitment. In addition, FOXO3-mediated enhancer activation correlates with regulation of adjacent genes and pre-existence of chromatin loops between FOXO3 bound enhancers and target genes. Combined, our data elucidate how FOXOs regulate gene transcription and provide insight into mechanisms by which FOXOs can induce different gene expression programs depending on chromatin architecture.


Asunto(s)
Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Regulación de la Expresión Génica , ARN Polimerasa II/genética , Línea Celular , Cromatina/genética , Cromatina/ultraestructura , Inmunoprecipitación de Cromatina , Elementos de Facilitación Genéticos , Proteína Forkhead Box O3 , Perfilación de la Expresión Génica , Humanos , Regiones Promotoras Genéticas , ARN Polimerasa II/metabolismo
15.
Nat Commun ; 15(1): 2725, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38548751

RESUMEN

Reactive Oxygen Species (ROS) derived from mitochondrial respiration are frequently cited as a major source of chromosomal DNA mutations that contribute to cancer development and aging. However, experimental evidence showing that ROS released by mitochondria can directly damage nuclear DNA is largely lacking. In this study, we investigated the effects of H2O2 released by mitochondria or produced at the nucleosomes using a titratable chemogenetic approach. This enabled us to precisely investigate to what extent DNA damage occurs downstream of near- and supraphysiological amounts of localized H2O2. Nuclear H2O2 gives rise to DNA damage and mutations and a subsequent p53 dependent cell cycle arrest. Mitochondrial H2O2 release shows none of these effects, even at levels that are orders of magnitude higher than what mitochondria normally produce. We conclude that H2O2 released from mitochondria is unlikely to directly damage nuclear genomic DNA, limiting its contribution to oncogenic transformation and aging.


Asunto(s)
Peróxido de Hidrógeno , Mitocondrias , Especies Reactivas de Oxígeno/metabolismo , Peróxido de Hidrógeno/metabolismo , Mitocondrias/metabolismo , ADN/metabolismo , Daño del ADN , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo
16.
Nat Cell Biol ; 8(10): 1064-73, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16964248

RESUMEN

FOXO (Forkhead box O) transcription factors are important regulators of cellular metabolism, cell-cycle progression and cell death. FOXO activity is regulated by multiple post-translational modifications, including phosphorylation, acetylation and polyubiquitination. Here, we show that FOXO becomes monoubiquitinated in response to increased cellular oxidative stress, resulting in its re-localization to the nucleus and an increase in its transcriptional activity. Deubiquitination of FOXO requires the deubiquitinating enzyme USP7/HAUSP (herpesvirus-associated ubiquitin-specific protease), which interacts with and deubiquitinates FOXO in response to oxidative stress. Oxidative stress-induced ubiquitination and deubiquitination by USP7 do not influence FOXO protein half-life. However, USP7 does negatively regulate FOXO transcriptional activity towards endogenous promoters. Our results demonstrate a novel mechanism of FOXO regulation and indicate that USP7 has an important role in regulating FOXO-mediated stress responses.


Asunto(s)
Endopeptidasas/metabolismo , Regulación de la Expresión Génica/fisiología , Factores de Transcripción/genética , Ubiquitina/metabolismo , Animales , Proteínas de Ciclo Celular , Células Cultivadas , Factores de Transcripción Forkhead , Humanos , Peróxido de Hidrógeno/farmacología , Riñón/metabolismo , Neoplasias Pulmonares/metabolismo , Ratones , Células 3T3 NIH , Oxidantes/farmacología , Estrés Oxidativo , Procesamiento Proteico-Postraduccional , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética , Transfección , Ubiquitina Tiolesterasa , Peptidasa Específica de Ubiquitina 7 , Proteasas Ubiquitina-Específicas
17.
Free Radic Biol Med ; 206: 134-142, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37392950

RESUMEN

Reactive Oxygen Species (ROS) in the form of H2O2 can act both as physiological signaling molecules as well as damaging agents, depending on their concentration and localization. The downstream biological effects of H2O2 were often studied making use of exogenously added H2O2, generally as a bolus and at supraphysiological levels. But this does not mimic the continuous, low levels of intracellular H2O2 production by for instance mitochondrial respiration. The enzyme d-Amino Acid Oxidase (DAAO) catalyzes H2O2 formation using d-amino acids, which are absent from culture media, as a substrate. Ectopic expression of DAAO has recently been used in several studies to produce inducible and titratable intracellular H2O2. However, a method to directly quantify the amount of H2O2 produced by DAAO has been lacking, making it difficult to assess whether observed phenotypes are the result of physiological or artificially high levels of H2O2. Here we describe a simple assay to directly quantify DAAO activity by measuring the oxygen consumed during H2O2 production. The oxygen consumption rate (OCR) of DAAO can directly be compared to the basal mitochondrial respiration in the same assay, to estimate whether the ensuing level of H2O2 production is within the range of physiological mitochondrial ROS production. In the tested monoclonal RPE1-hTERT cells, addition of 5 mM d-Ala to the culture media amounts to a DAAO-dependent OCR that surpasses ∼5% of the OCR that stems from basal mitochondrial respiration and hence produces supra-physiological levels of H2O2. We show that the assay can also be used to select clones that express differentially localized DAAO with the same absolute level of H2O2 production to be able to discriminate the effects of H2O2 production at different subcellular locations from differences in total oxidative burden. This method therefore greatly improves the interpretation and applicability of DAAO-based models, thereby moving the redox biology field forward.


Asunto(s)
Aminoácidos , Peróxido de Hidrógeno , Humanos , Peróxido de Hidrógeno/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Aminoácidos/metabolismo , Consumo de Oxígeno , Oxígeno
18.
Cell Rep ; 42(6): 112583, 2023 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-37267106

RESUMEN

Upon antigen-specific T cell receptor (TCR) engagement, human CD4+ T cells proliferate and differentiate, a process associated with rapid transcriptional changes and metabolic reprogramming. Here, we show that the generation of extramitochondrial pyruvate is an important step for acetyl-CoA production and subsequent H3K27ac-mediated remodeling of histone acetylation. Histone modification, transcriptomic, and carbon tracing analyses of pyruvate dehydrogenase (PDH)-deficient T cells show PDH-dependent acetyl-CoA generation as a rate-limiting step during T activation. Furthermore, T cell activation results in the nuclear translocation of PDH and its association with both the p300 acetyltransferase and histone H3K27ac. These data support the tight integration of metabolic and histone-modifying enzymes, allowing metabolic reprogramming to fuel CD4+ T cell activation. Targeting this pathway may provide a therapeutic approach to specifically regulate antigen-driven T cell activation.


Asunto(s)
Ensamble y Desensamble de Cromatina , Histonas , Humanos , Histonas/metabolismo , Acetilcoenzima A/metabolismo , Linfocitos T CD4-Positivos/metabolismo
20.
Biochim Biophys Acta ; 1813(11): 1926-37, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21539865

RESUMEN

Aging is characterized by the general decline in tissue and body function and the increased susceptibility to age-related pathologies, such as cancer. To maintain optimal tissue and body function, organisms have developed complex mechanisms for tissue homeostasis. Importantly, it is becoming apparent that these same mechanisms when deregulated also result in the development of age-related disease. The build in fail safe mechanisms of homeostasis, which prevent skewing toward disease, themselves contribute to aspects of aging. Thus, longevity is limited by an intrinsic trade-off between optimal tissue function and disease. Consequently, aging and age-related diseases, such as cancer and diabetes are driven by the same genetic determinants. Illustrative in this respect is the insulin/IGF-1 signaling pathway acting through PI3K/PKB and FOXO. Loss of PKB signaling contributes to diabetes, whereas gain of function of PKB drives cancer. Enhanced FOXO activity, at least in model organism contributes to extended lifespan and acts as a tumor suppressive mechanism. Here, we focus on the linkage between PKB and FOXO as a central switch in contributing to tissue homeostasis and age-related diseases in particular cancer. This article is part of a Special Issue entitled: P13K-AKT-FoxO axis in cancer and aging.


Asunto(s)
Envejecimiento/metabolismo , Factores de Transcripción Forkhead/metabolismo , Neoplasias/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Animales , Proteínas de Ciclo Celular/metabolismo , Proteína Forkhead Box O1 , Humanos , Modelos Biológicos , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Proteína p53 Supresora de Tumor/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA