Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Chem Biodivers ; 10(5): 734-43, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23681723

RESUMEN

Peptaibiotics are nonribosomally biosynthesized peptides, which - according to definition - contain the marker amino acid α-aminoisobutyric acid (Aib) and possess antibiotic properties. Being known since 1958, a constantly increasing number of peptaibiotics have been described and investigated with a particular emphasis on hypocrealean fungi. Starting from the existing online 'Peptaibol Database', first published in 1997, an exhaustive literature survey of all known peptaibiotics was carried out and resulted in a list of 1043 peptaibiotics. The gathered information was compiled and used to create the new 'The Comprehensive Peptaibiotics Database', which is presented here. The database was devised as a software tool based on Microsoft (MS) Access. It is freely available from the internet at http://peptaibiotics-database.boku.ac.at and can easily be installed and operated on any computer offering a Windows XP/7 environment. It provides useful information on characteristic properties of the peptaibiotics included such as peptide category, group name of the microheterogeneous mixture to which the peptide belongs, amino acid sequence, sequence length, producing fungus, peptide subfamily, molecular formula, and monoisotopic mass. All these characteristics can be used and combined for automated search within the database, which makes The Comprehensive Peptaibiotics Database a versatile tool for the retrieval of valuable information about peptaibiotics. Sequence data have been considered as to December 14, 2012.


Asunto(s)
Antibacterianos , Bases de Datos Factuales , Péptidos/síntesis química , Antibacterianos/síntesis química , Antibacterianos/química , Péptidos/química
2.
N Biotechnol ; 69: 1-7, 2022 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-35182781

RESUMEN

Oleaginous yeasts offer an interesting possibility for renewable lipid production, since the single cell oil accumulated can be based on a wide range of cheap, waste-derived carbon sources. Here, several short chain carboxylic acids and sugars commonly found in these substrates were assessed as carbon sources for Apiotrichum brassicae and Pichia kudriavzevii. While both strains were able to utilize all carbon sources employed, high volumetric lipid productivities (0.4 g/Lh) and lipid contents (68%) could be reached particularly with acetic acid as carbon source. Odd-numbered volatile fatty acids led to lower productivities and lipid contents, but the lipids contained unusually high proportions of odd-numbered fatty acids (up to 80% of total fatty acids). These fatty acids are rather uncommon in nature and might offer the possibility for various high value applications. In conclusion both strains are able to utilize a wide range of substrates potentially present in waste-derived substrates. Lipid content and volumetric lipid productivity strongly depend on the carbon source, with even-numbered volatile fatty acids resulting in the highest values. For volatile fatty acids in particular, the carbon source also strongly influences the composition of the lipids produced by the yeast strains.


Asunto(s)
Carbono , Levaduras , Basidiomycota , Biocombustibles , Ácidos Grasos , Ácidos Grasos Volátiles , Pichia
3.
FEMS Microbiol Lett ; 368(9)2021 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-34036336

RESUMEN

The establishment of a sustainable circular bioeconomy requires the effective material recycling from biomass and biowaste beyond composting/fertilizer or anaerobic digestion/bioenergy. Recently, volatile fatty acids attracted much attention due to their potential application as carbon source for the microbial production of high added-value products. Their low-cost production from different types of wastes through dark fermentation is a key aspect, which will potentially lead to the sustainable production of fuels, materials or chemicals, while diminishing the waste volume. This article reviews the utilization of a volatile fatty acid platform for the microbial production of polyhydroxyalkanoates, single cell oil and omega-3 fatty acids, giving emphasis on the fermentation challenges for the efficient implementation of the bioprocess and how they were addressed. These challenges were addressed through a research project funded by the European Commission under the Horizon 2020 programme entitled 'VOLATILE-Biowaste derived volatile fatty acid platform for biopolymers, bioactive compounds and chemical building blocks'.


Asunto(s)
Bacterias/metabolismo , Carbono/metabolismo , Ácidos Grasos Volátiles/metabolismo , Fermentación , Biocombustibles , Biomasa , Biopolímeros , Reactores Biológicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA