Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Revista
Intervalo de año de publicación
1.
Cureus ; 16(5): e61256, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38807972

RESUMEN

Background After the completion of the Human Genome Project in 2003, the impact of genetic variations among people on human health was better understood. Precision medicine, also called 4P (Predictive, Preventive, Personalized, Participatory) medicine, is used to determine personal health risks, prevent, diagnose, and treat chronic diseases, and aims to identify the phenotypic, genotypic, and environmental factors that affect individual health risks instead of applying the same approach to everyone. Methods The study was conducted with 24 patients aged between 7 and 57. The patient group was selected from individuals who had undergone genetic and microbiota testing at Epigenetic Coaching Company. The patients' age, gender, and health status were documented. Genomic analysis of buccal samples was subsequently conducted using a custom Infinium HTS iSelect microarray on an Illumina iScan instrument, and microbiota metagenome analysis was performed using an Illumina NextSeq 500 platform. This study was performed in line with the principles of the Declaration of Helsinki. Approval was granted by the Ethics Committee of Biruni University Molecular Biology and Genetics Ethics Committee, with the decision number 2023/78-03. Results The genotypes of 19 cases carrying genetic variants involved in the metabolism of Vitamin D, Folate, B12, and Choline were analyzed. Eight of the cases were included in our study as autism patients, eight as allergy patients, and three as autoimmune thyroiditis patients. The Vitamin D receptor (VDR) genetic variants and microbiota diversity (using the Firmicutes/Bacteroides ratio, an indicator of dysbiosis) of 11 cases (9 allergy and two autism patients) participating in the study were evaluated together. Conclusions Translating nutrigenetic and nutrigenomic research into multidisciplinary clinical practice is the most challenging aspect. It is now evident that integrating data regarding phenotype and genotype, and using nutrition, lifestyle, and supplements tailored to an individual's genetics can increase clinical success. Importantly, if we wish to adopt an epigenomic approach, we must incorporate analyses of nutrigenetics, microbiota, and personalized risk based on test results.

2.
Cureus ; 16(7): c185, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38993622

RESUMEN

[This corrects the article DOI: 10.7759/cureus.61256.].

3.
Cureus ; 16(8): e66959, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39148948

RESUMEN

BACKGROUND: Nutrigenetics explores how genetic variations influence an individual's responses to nutrients, enabling personalized nutrition. As dietary supplements gain popularity, understanding genetic factors in their metabolism and effectiveness is crucial for optimal health outcomes. This study examines the role of genetic differences in the metabolism and effects of nutraceuticals, underscoring the significance of personalized nutrition within precision health. It aims to reveal how individual genetic profiles influence responses to dietary supplements, highlighting the value of nutrigenetics in optimizing health interventions. The study explores how genetic variations affect the absorption and effects of nutraceuticals, focusing on personalized supplement choices based on nutrigenetics. METHODS: Sixteen patients from an Epigenetic Coaching clinic who were using supplements such as quercetin, curcumin, green tea, and sulforaphane and reporting side effects were studied. Their clinical outcomes were analyzed in relation to their supplement choices and genetic backgrounds. The study involved five women and 11 men, including eight with autism and others with conditions like Hashimoto's thyroiditis (HT) disease and joint pain. RESULTS: In the study, it was observed that removing sulforaphane and sulfur-rich supplements from the diet of five patients reduced agitation. Removing sulforaphane and sulfur-rich supplements from the diet of four patients reduced clinical symptoms. Green tea caused discomfort in two patients. Responses to quercetin showed clinical differences in two patients. Anxiety and hyperactivity increased in three patients who took curcumin. Conclusion This study highlights the importance of considering individual genetic profiles when recommending dietary supplements. The findings suggest that personalized nutrition, guided by nutrigenetic insights, can enhance the efficacy and safety of nutraceutical interventions. Tailoring supplement choices based on genetic information can lead to better health outcomes and reduced adverse effects, emphasizing the need for integrating genetic testing into nutritional planning and healthcare practices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA