Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Regul Toxicol Pharmacol ; 136: 105263, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36228836

RESUMEN

Titanium dioxide is a ubiquitous white material found in a diverse range of products from foods to sunscreens, as a pigment and thickener, amongst other uses. Titanium dioxide has been considered no longer safe for use in foods (nano and microparticles of E171) by the European Food Safety Authority (EFSA) due to concerns over genotoxicity. There are however, conflicting opinions regarding the safety of Titanium dioxide. In an attempt to clarify the situation, a comprehensive weight of evidence (WoE) assessment of the genotoxicity of titanium dioxide based on the available data was performed. A total of 192 datasets for endpoints and test systems considered the most relevant for identifying mutagenic and carcinogenic potential were reviewed and discussed for both reliability and relevance (by weight of evidence) and in the context of whether the physico-chemical properties of the particles had been characterised. The view of an independent panel of experts was that, of the 192 datasets identified, only 34 met the reliability and quality criteria for being most relevant in the evaluation of genotoxicity. Of these, 10 were positive (i.e. reported evidence that titanium dioxide was genotoxic), all of which were from studies of DNA strand breakage (comet assay) or chromosome damage (micronucleus or chromosome aberration assays). All the positive findings were associated with high cytotoxicity, oxidative stress, inflammation, apoptosis, necrosis, or combinations of these. Considering that DNA and chromosome breakage can be secondary to physiological stress, it is highly likely that the observed genotoxic effects of titanium dioxide, including those with nanoparticles, are secondary to physiological stress. Consistent with this finding, there were no positive results from the in vitro and in vivo gene mutation studies evaluated, although it should be noted that to definitively conclude a lack of mutagenicity, more robust in vitro and in vivo gene mutation studies would be useful. Existing evidence does not therefore support a direct DNA damaging mechanism for titanium dioxide (nano and other forms).


Asunto(s)
Nanopartículas del Metal , Reproducibilidad de los Resultados , Nanopartículas del Metal/química , Titanio/toxicidad , Titanio/química , Ensayo Cometa , Daño del ADN , Mutágenos/toxicidad , ADN
2.
Artículo en Inglés | MEDLINE | ID: mdl-31550212

RESUMEN

Some of the chemicals in materials used for packaging food may leak into the food, resulting in human exposure. These include so-called Non-intentionally Added Substances (NIAS), many of them being unidentified and toxicologically uncharacterized. This raises the question of how to address their safety. An approach consisting of identification and toxicologically testing all of them appears neither feasible nor necessary. Instead, it has been proposed to use the threshold of toxicological concern (TTC) Cramer class III to prioritise unknown NIAS on which further safety investigations should focus. Use of the Cramer class III TTC for this purpose would be appropriate if amongst others sufficient evidence were available that the unknown chemicals were not acetylcholinesterase inhibitors or direct DNA-reactive mutagens. While knowledge of the material and analytical chemistry may efficiently address the first concern, the second could not be addressed in this way. An alternative would be use of a bioassay capable of detecting DNA-reactive mutagens at very low levels. No fully satisfactory bioassay was identified. The Ames test appeared the most suitable since it specifically detects DNA-reactive mutagens and the limit of biological detection of highly potent genotoxic carcinogens is low. It is proposed that for a specific migrate, the evidence for absence of mutagenicity based on the Ames test, together with analytical chemistry and information on packaging manufacture could allow application of the Cramer class III TTC to prioritise unknown NIAS. Recommendations, as well as research proposals, have been developed on sample preparation and bioassay improvement with the ultimate aim of improving limits of biological detection of mutagens. Although research is still necessary, the proposed approach should bring significant benefits over the current practices used for safety evaluation of food contact materials.


Asunto(s)
Bioensayo , Análisis de los Alimentos , Contaminación de Alimentos/análisis , Embalaje de Alimentos , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA