Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Neurosci ; 33(17): 7501-12, 2013 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-23616555

RESUMEN

Many strong rewards, including abused drugs, also produce aversive effects that are poorly understood. For example, cocaine can produce aversive conditioning after its rewarding effects have dissipated, consistent with opponent process theory, but the neural mechanisms involved are not well known. Using electrophysiological recordings in awake rats, we found that some neurons in the lateral habenula (LHb), where activation produces aversive conditioning, exhibited biphasic responses to single doses of intravenous cocaine, with an initial inhibition followed by delayed excitation paralleling cocaine's shift from rewarding to aversive. Recordings in LHb slice preparations revealed similar cocaine-induced biphasic responses and further demonstrated that biphasic responses were mimicked by dopamine, that the inhibitory phase depended on dopamine D2-like receptors, and that the delayed excitation persisted after drug washout for prolonged durations consistent with findings in vivo. c-Fos experiments further showed that cocaine-activated LHb neurons preferentially projected to and activated neurons in the rostromedial tegmental nucleus (RMTg), a recently identified target of LHb axons that is activated by negative motivational stimuli and inhibits dopamine neurons. Finally, pharmacological excitation of the RMTg produced conditioned place aversion, whereas cocaine-induced avoidance behaviors in a runway operant paradigm were abolished by lesions of LHb efferents, lesions of the RMTg, or by optogenetic inactivation of the RMTg selectively during the period when LHb neurons are activated by cocaine. Together, these results indicate that LHb/RMTg pathways contribute critically to cocaine-induced avoidance behaviors, while also participating in reciprocally inhibitory interactions with dopamine neurons.


Asunto(s)
Reacción de Prevención/efectos de los fármacos , Cocaína/administración & dosificación , Condicionamiento Operante/efectos de los fármacos , Dopamina , Habénula/efectos de los fármacos , Mesencéfalo/efectos de los fármacos , Animales , Reacción de Prevención/fisiología , Condicionamiento Operante/fisiología , Dopamina/fisiología , Habénula/fisiología , Inyecciones Intravenosas , Masculino , Mesencéfalo/fisiología , Vías Nerviosas/efectos de los fármacos , Vías Nerviosas/fisiología , Ratas , Ratas Sprague-Dawley , Ratas Wistar
2.
Neuropharmacology ; 196: 108702, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34246685

RESUMEN

A growing body of literature implicates noradrenergic (NE) signaling in the modulation of ethanol consumption. However, relatively few studies have detailed specific brain pathways that mediate NE-associated binge-like ethanol consumption. To begin to fill this gap in the literature, male and female C57BL6/J and TH-ires-cre mice underwent pharmacological and chemogenetic testing, respectively, in combination with "drinking in the dark" procedures to model binge-like consumption of ethanol or sucrose solutions. First, we showed that intraperitoneal administration of the NE reuptake inhibitor, reboxetine, blunted binge-like ethanol intake in C57BL6/J mice. Chemogenetic activation of locus coeruleus (LC) tyrosine hydroxylase (TH)-expressing neurons blunted binge-like ethanol intake regardless of sex. Chemogenetic activation of LC projections to the lateral hypothalamus (LH), a region implicated in ethanol consumption, blunted binge-like ethanol drinking without altering sucrose intake in ethanol-experienced or ethanol-naïve mice. In C57BL/6 J mice, LH-targeted microinfusion of an α1-adrenergic receptor (AR) agonist blunted binge-like ethanol intake across both sexes, while LH infusion of a ß-AR agonist blunted binge-like ethanol intake in females exclusively. Finally, in mice with high baseline ethanol intake both an α1- AR agonist and an α-2 AR antagonist blunted binge-like ethanol intake. The present results provide novel evidence that increased NE tone in a circuit arising from the LC and projecting to the LH reduces binge-like ethanol drinking in mice, and may represent a novel approach to treating binge or heavy drinking prior to the development of dependence. This article is part of the special Issue on "Neurocircuitry Modulating Drug and Alcohol Abuse".


Asunto(s)
Inhibidores de Captación Adrenérgica/farmacología , Consumo Excesivo de Bebidas Alcohólicas/metabolismo , Depresores del Sistema Nervioso Central/administración & dosificación , Etanol/administración & dosificación , Área Hipotalámica Lateral/metabolismo , Locus Coeruleus/metabolismo , Norepinefrina/metabolismo , Reboxetina/farmacología , Agonistas de Receptores Adrenérgicos alfa 1/farmacología , Agonistas de Receptores Adrenérgicos alfa 2/farmacología , Agonistas Adrenérgicos beta/farmacología , Animales , Consumo Excesivo de Bebidas Alcohólicas/fisiopatología , Femenino , Área Hipotalámica Lateral/efectos de los fármacos , Área Hipotalámica Lateral/fisiopatología , Locus Coeruleus/efectos de los fármacos , Locus Coeruleus/fisiopatología , Masculino , Ratones , Vías Nerviosas , Tirosina 3-Monooxigenasa
3.
Neuropharmacology ; 199: 108797, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34547331

RESUMEN

There is strong evidence that ethanol entails aversive effects that can act as a deterrent to overconsumption. We have found that in doses that support the development of a conditioned taste aversion ethanol increases the activity of tyrosine hydroxylase (TH) positive neurons in the locus coeruleus (LC), a primary source of norepinephrine (NE). Using cre-inducible AAV8-ChR2 viruses in TH-ires-cre mice we found that the LC provides NE projections that innervate the rostromedial tegmental nucleus (RMTg), a brain region that has been implicated in the aversive properties of drugs. Because the neurocircuitry underlying the aversive effects of ethanol is poorly understood, we characterized the role of the LC to RMTg circuit in modulating aversive unconditioned responses and binge-like ethanol intake. Here, both male and female TH-ires-cre mice were cannulated in the RMTg and injected in the LC with rAVV viruses that encode for a Gq-expressing designer receptor exclusively activated by designer drugs (DREADDs) virus, or its control virus, to directly control the activity of NE neurons. A Latin Square paradigm was used to analyze both 20% ethanol and 3% sucrose consumption using the "drinking-in-the-dark" (DID) paradigm. Chemogenetic activation of the LC to RMTg pathway significantly blunted the binge-ethanol drinking, with no effect on the sucrose consumption, increased the emission of mid-frequency vocalizations and induced malaise-like behaviors in mice. The present findings indicate an important involvement of the LC to RMTg pathway in reducing ethanol consumption, and characterize unconditioned aversive reactions induced by activation of this noradrenergic pathway.


Asunto(s)
Conducta Animal/fisiología , Consumo Excesivo de Bebidas Alcohólicas/fisiopatología , Consumo Excesivo de Bebidas Alcohólicas/terapia , Locus Coeruleus/fisiología , Norepinefrina/fisiología , Área Tegmental Ventral/fisiología , Animales , Reacción de Prevención/efectos de los fármacos , Reacción de Prevención/fisiología , Modelos Animales de Enfermedad , Femenino , Masculino , Ratones , Ratones Transgénicos , Transducción de Señal/fisiología , Vocalización Animal/efectos de los fármacos , Vocalización Animal/fisiología
4.
Brain Sci ; 10(12)2020 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-33333877

RESUMEN

The inbred high drinking in the dark (iHDID1 and iHDID2) strains are two replicate lines bred from the parent HS/Npt (HS) line for achieving binge levels of blood ethanol concentration (≥80 mg/dL BEC) in a four-hour period. In this work, we sought to evaluate differences in baseline and ethanol-induced c-Fos activation between the HS, iHDID1, and iHDID2 genetic lines in brain regions known to process the aversive properties of ethanol. METHODS: Male and female HS, iHDID1, and iHDID2 mice underwent an IP saline 2 3 g/kg ethanol injection. Brain sections were then stained for c-Fos expression in the basolateral/central amygdala (BLA/CeA), bed nucleus of the stria terminals (BNST), A2, locus coeruleus (LC), parabrachial nucleus (PBN), lateral/medial habenula (LHb/MHb), paraventricular nucleus of the thalamus (PVT), periaqueductal gray (PAG), Edinger-Westphal nuclei (EW), and rostromedial tegmental nucleus (RMTg). RESULTS: The iHDID1 and iHDID2 lines showed similar and distinct patterns of regional c-Fos; however, in no region did the two both significantly differ from the HS line together. CONCLUSIONS: These data lend further support to altered baseline or ethanol-induced activation in brain regions associated with processing the aversive properties of ethanol in the iHDID1 and iHDID2 genetic lines.

5.
Neuroscience ; 367: 159-168, 2017 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-29111360

RESUMEN

The assessment of binge ethanol-induced neuronal activation, using c-Fos immunoreactivity (IR) as a marker of neuronal activity, is typically accomplished via forced ethanol exposure, such as intraperitoneal injection or gavage. Neuronal activity using a voluntary binge-like drinking model, such as "drinking-in-the-dark" (DID), has not been thoroughly explored. Additionally, studies assessing ethanol-elicited neuronal activation may or may not involve stereotaxic surgery, which could impact c-Fos IR. The experiments detailed herein aimed to assess the effects of voluntary binge-like ethanol consumption on c-Fos IR in brain regions implicated in ethanol intake in animals with and without surgery experience. Age-matched male C57BL/6J mice underwent either stereotaxic surgery (Study 1) or no surgery (Study 2). Then, mice experienced one 4-day DID cycle, tail blood samples were collected immediately after test conclusion on day 4, and mice were subsequently sacrificed. In each study, mice that drink ethanol were sorted into those that achieved binge-equivalent blood ethanol concentrations (BECs ≥ 80 mg/dl) versus those that did not. Relative to water-consuming controls, mice with BECs ≥ 80 mg/dl showed significantly elevated c-Fos IR in several brain regions implicated in neurobiological responses to ethanol. In general, the brain regions exhibiting binge-induced c-Fos IR were the same between studies, though differences were noted, highlighting the need for caution when interpreting ethanol-induced c-Fos IR when subjects have a prior history of surgery. Altogether, these results provide insight into the brain regions that modulate binge-like ethanol intake stemming from DID procedures among animals with and without surgery experience.


Asunto(s)
Consumo de Bebidas Alcohólicas/metabolismo , Consumo de Bebidas Alcohólicas/patología , Consumo Excesivo de Bebidas Alcohólicas/patología , Encéfalo/metabolismo , Proteínas Proto-Oncogénicas c-fos/metabolismo , Consumo de Bebidas Alcohólicas/fisiopatología , Animales , Encéfalo/efectos de los fármacos , Depresores del Sistema Nervioso Central/farmacología , Etanol/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL
6.
Biol Psychiatry ; 81(12): 1041-1049, 2017 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-27931744

RESUMEN

BACKGROUND: Psychiatric disorders such as addiction and mania are marked by persistent reward seeking despite highly negative or aversive outcomes, but the neural mechanisms underlying this aberrant decision making are unknown. The recently identified rostromedial tegmental nucleus (RMTg) encodes a wide variety of aversive stimuli and sends robust inhibitory projections to midbrain dopamine neurons, leading to the hypothesis that the RMTg provides a brake to reward signaling in response to aversive costs. METHODS: To test the role of the RMTg in punished reward seeking, adult male Sprague Dawley rats were tested in several cost-benefit decision tasks after excitotoxic lesions of the RMTg or temporally specific optogenetic inhibition of RMTg efferents in the ventral tegmental area. RESULTS: RMTg lesions drastically impaired the ability of foot shock to suppress operant responding for food. Optogenetic inhibition showed that this resistance to punishment was due in part to RMTg activity at the precise moment of shock delivery and was mediated by projections to the ventral tegmental area, which is consistent with an aversive "teaching signal" role for the RMTg during encoding of the aversive event. We observed a similar resistance to punishment when the RMTg was selectively inhibited immediately prior to the operant lever press, which is consistent with a second distinct role for the RMTg during action selection. These effects were not attributable to RMTg effects on learning rate, locomotion, shock sensitivity, or perseveration. CONCLUSIONS: The RMTg has two strong and dissociable roles during both encoding and recall of aversive consequences of behavior.


Asunto(s)
Condicionamiento Operante/fisiología , Castigo/psicología , Recompensa , Área Tegmental Ventral/fisiología , Animales , Masculino , Ratas , Ratas Transgénicas
7.
Neuropsychopharmacology ; 41(6): 1505-12, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26442599

RESUMEN

It was recently reported that activation of a subset of lateral hypothalamus (LH) GABAergic neurons induced both appetitive (food-seeking) and consummatory (eating) behaviors in vGat-ires-cre mice, while inhibition or deletion of GABAergic neurons blunted these behaviors. As food and caloric-dense liquid solutions were used, the data reported suggest that these LH GABAergic neurons may modulate behaviors that function to maintain homeostatic caloric balance. Here we report that chemogenetic activation of this GABAergic population in vGat-ires-cre mice increased consummatory behavior directed at any available stimulus, including those entailing calories (food, sucrose, and ethanol), those that do not (saccharin and water), and those lacking biological relevance (wood). Chemogenetic inhibition of these neurons attenuated consummatory behaviors. These data indicate that LH GABAergic neurons modulate consummatory behaviors regardless of the caloric content or biological relevance of the consumed stimuli.


Asunto(s)
Conducta Consumatoria/fisiología , Neuronas GABAérgicas/fisiología , Hipotálamo/fisiopatología , Consumo de Bebidas Alcohólicas/fisiopatología , Animales , Bulimia/fisiopatología , Ingestión de Líquidos/fisiología , Ingestión de Energía/fisiología , Conducta Alimentaria/fisiología , Femenino , Alimentos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA