Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Pflugers Arch ; 476(7): 1087-1107, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38635058

RESUMEN

Functional magnetic resonance imaging (fMRI) suggests that the hypoxic ventilatory response is facilitated by the AMP-activated protein kinase (AMPK), not at the carotid bodies, but within a subnucleus (Bregma -7.5 to -7.1 mm) of the nucleus tractus solitarius that exhibits right-sided bilateral asymmetry. Here, we map this subnucleus using cFos expression as a surrogate for neuronal activation and mice in which the genes encoding the AMPK-α1 (Prkaa1) and AMPK-α2 (Prkaa2) catalytic subunits were deleted in catecholaminergic cells by Cre expression via the tyrosine hydroxylase promoter. Comparative analysis of brainstem sections, relative to controls, revealed that AMPK-α1/α2 deletion inhibited, with right-sided bilateral asymmetry, cFos expression in and thus activation of a neuronal cluster that partially spanned three interconnected anatomical nuclei adjacent to the area postrema: SolDL (Bregma -7.44 mm to -7.48 mm), SolDM (Bregma -7.44 mm to -7.48 mm) and SubP (Bregma -7.48 mm to -7.56 mm). This approximates the volume identified by fMRI. Moreover, these nuclei are known to be in receipt of carotid body afferent inputs, and catecholaminergic neurons of SubP and SolDL innervate aspects of the ventrolateral medulla responsible for respiratory rhythmogenesis. Accordingly, AMPK-α1/α2 deletion attenuated hypoxia-evoked increases in minute ventilation (normalised to metabolism), reductions in expiration time, and increases sigh frequency, but increased apnoea frequency during hypoxia. The metabolic response to hypoxia in AMPK-α1/α2 knockout mice and the brainstem and spinal cord catecholamine levels were equivalent to controls. We conclude that within the brainstem an AMPK-dependent, hypoxia-responsive subnucleus partially spans SubP, SolDM and SolDL, namely SubSol-HIe, and is critical to coordination of active expiration, the hypoxic ventilatory response and defence against apnoea.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Apnea , Hipoxia , Núcleo Solitario , Animales , Núcleo Solitario/metabolismo , Hipoxia/metabolismo , Ratones , Proteínas Quinasas Activadas por AMP/metabolismo , Proteínas Quinasas Activadas por AMP/genética , Apnea/metabolismo , Apnea/fisiopatología , Masculino , Ratones Endogámicos C57BL , Respiración
2.
J Physiol ; 601(19): 4441-4467, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37688347

RESUMEN

Despite profound diaphragm weakness, peak inspiratory pressure-generating capacity is preserved in young mdx mice revealing adequate compensation by extra-diaphragmatic muscles of breathing in early dystrophic disease. We hypothesised that loss of compensation gives rise to respiratory system compromise in advanced dystrophic disease. Studies were performed in male wild-type (n = 196) and dystrophin-deficient mdx mice (n = 188) at 1, 4, 8, 12 and 16 months of age. In anaesthetised mice, inspiratory pressure and obligatory and accessory respiratory EMG activities were recorded during baseline and sustained tracheal occlusion for up to 30-40 s to evoke peak system activation to task failure. Obligatory inspiratory EMG activities were lower in mdx mice across the ventilatory range to peak activity, emerging in early dystrophic disease. Early compensation protecting peak inspiratory pressure-generating capacity in mdx mice, which appears to relate to transforming growth factor-ß1-dependent fibrotic remodelling of the diaphragm and preserved accessory muscle function, was lost at 12 and 16 months of age. Denervation and surgical lesion of muscles of breathing in 4-month-old mice revealed a greater dependency on diaphragm for peak inspiratory performance in wild-type mice, whereas mdx mice were heavily dependent upon accessory muscles (including abdominal muscles) for peak performance. Accessory EMG activities were generally preserved or enhanced in young mdx mice, but peak EMG activities were lower than wild-type by 12 months of age. In general, ventilation was reasonably well protected in mdx mice until 16 months of age. Despite the early emergence of impairments in the principal obligatory muscles of breathing, peak inspiratory performance is compensated in early dystrophic disease due to diaphragm remodelling and facilitated contribution by accessory muscles of breathing. Loss of compensation afforded by accessory muscles underpins the emergence of respiratory system morbidity in advanced dystrophic disease. KEY POINTS: Despite diaphragm weakness, peak inspiratory performance is preserved in young dystrophin-deficient mdx mice revealing adequate compensation by extra-diaphragmatic muscles. Peak obligatory muscle (diaphragm, external intercostal, and parasternal intercostal) EMG activities are lower in mdx mice, emerging early in dystrophic disease, before the temporal decline in peak performance. Peak EMG activities of some accessory muscles are lower, whereas others are preserved. There is greater recruitment of the trapezius muscle in mdx mice during peak system activation. In phrenicotomised mice with confirmed diaphragm paralysis, there is a greater contribution made by extra-diaphragmatic muscles to peak inspiratory pressure in mdx compared with wild-type mice. Surgical lesion of accessory (including abdominal) muscles adversely affects peak pressure generation in mdx mice. Diaphragm remodelling leading to stiffening provides a mechanical advantage to peak pressure generation via the facilitated action of extra-diaphragmatic muscles in early dystrophic disease. Peak accessory EMG activities are lower in 12-month-old mdx compared to wild-type mice. Peak inspiratory pressure declines in mdx mice with advanced disease. We conclude that compensation afforded by accessory muscles of breathing declines in advanced dystrophic disease precipitating the emergence of respiratory system dysfunction.


Asunto(s)
Distrofia Muscular de Duchenne , Trastornos Respiratorios , Masculino , Ratones , Animales , Ratones Endogámicos mdx , Distrofina , Diafragma , Sistema Respiratorio , Debilidad Muscular , Músculos Respiratorios
3.
J Physiol ; 600(15): 3465-3482, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35620971

RESUMEN

Duchenne muscular dystrophy (DMD) is an X-linked neuromuscular disease caused by a deficiency in dystrophin - a structural protein which stabilises muscle during contraction. Dystrophin deficiency adversely affects the respiratory system leading to sleep-disordered breathing, hypoventilation, and weakness of the expiratory and inspiratory musculature, which culminate in severe respiratory dysfunction. Muscle degeneration-associated respiratory impairment in neuromuscular disease is a result of disruptions at multiple sites of the respiratory control network, including sensory and motor pathways. As a result of this pathology, respiratory failure is a leading cause of premature death in DMD patients. Currently available treatments for DMD respiratory insufficiency attenuate respiratory symptoms without completely reversing the underlying pathophysiology. This underscores the need to develop curative therapies to improve quality of life and longevity of DMD patients. This review summarises research findings on the pathophysiology of respiratory insufficiencies in DMD disease in humans and animal models, the clinical interventions available to ameliorate symptoms, and gene-based therapeutic strategies uncovered by preclinical animal studies.


Asunto(s)
Distrofia Muscular de Duchenne , Enfermedades Neuromusculares , Animales , Modelos Animales de Enfermedad , Distrofina/metabolismo , Humanos , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/terapia , Enfermedades Neuromusculares/complicaciones , Calidad de Vida , Respiración
4.
Exp Physiol ; 107(8): 946-964, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35728802

RESUMEN

NEW FINDINGS: What is the central question of this study? Exposure to chronic intermittent hypoxia (CIH) evokes redox changes, culminating in impaired upper airway muscle function: what is the specific source of CIH-induced reactive oxygen species? What is the main finding and its importance? Profound sternohyoid muscle dysfunction following exposure to CIH was entirely prevented by apocynin co-treatment or NADPH oxidase 2 (NOX2) deletion. The results have implications for human obstructive sleep apnoea syndrome and point to antioxidant intervention, potentially targeting NOX2 blockade, as a therapeutic strategy. ABSTRACT: Exposure to chronic intermittent hypoxia (CIH) evokes redox changes, culminating in impaired upper airway muscle function. We sought to determine if NADPH oxidase 2 (NOX2)-derived reactive oxygen species underpin CIH-induced maladaptive changes in upper airway (sternohyoid) muscle performance. Adult male mice (C57BL/6J) were assigned to one of three groups: normoxic controls (sham); CIH-exposed (CIH, 12 cycles/hour, 8 h/day for 14 days); and CIH + apocynin (NOX2 inhibitor, 2 mM) given in the drinking water throughout exposure to CIH. In addition, we studied sham and CIH-exposed NOX2-null mice (B6.129S-CybbTM1Din /J ). Profound sternohyoid muscle dysfunction following exposure to CIH was entirely prevented by apocynin co-treatment or NOX2 deletion. Exposure to CIH increased sternohyoid muscle NOX enzyme activity, with no alteration to the gene or protein expression of NOX subunits. There was no evidence of overt oxidative stress, muscle regeneration, inflammation or atrophy following exposure to CIH. We suggest that NOX-dependent CIH-induced upper airway muscle weakness increases vulnerability to upper airway obstruction. Our results have implications for human obstructive sleep apnoea syndrome and point to antioxidant intervention, potentially targeting NOX2 blockade, as a therapeutic strategy.


Asunto(s)
Antioxidantes , NADPH Oxidasa 2/metabolismo , Apnea Obstructiva del Sueño , Animales , Antioxidantes/uso terapéutico , Humanos , Hipoxia , Masculino , Ratones , Ratones Endogámicos C57BL , Debilidad Muscular , Especies Reactivas de Oxígeno/metabolismo
5.
J Physiol ; 597(3): 831-848, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30570134

RESUMEN

KEY POINTS: Respiratory muscle weakness is a major feature of Duchenne muscular dystrophy (DMD), yet little is known about the neural control of the respiratory muscles in DMD and animal models of dystrophic disease. Substantial diaphragm muscle weakness is apparent in young (8-week-old) mdx mice, although ventilatory capacity in response to maximum chemostimulation in conscious mice is preserved. Peak volume- and flow-related measures during chemoactivation are equivalent in anaesthetized, vagotomized wild-type and mdx mice. Diaphragm and T3 external intercostal electromyogram activities are lower during protracted sustained airway occlusion in mdx compared to wild-type mice. Yet, peak inspiratory pressure generation is remarkably well preserved. Despite profound diaphragm weakness and lower muscle activation during maximum non-ventilatory efforts, inspiratory pressure-generating capacity is preserved in young adult mdx mice, revealing compensation in support of respiratory system performance that is adequate, at least early in dystrophic disease. ABSTRACT: Diaphragm dysfunction is recognized in the mdx mouse model of muscular dystrophy; however, there is a paucity of information concerning the neural control of dystrophic respiratory muscles. In young adult (8 weeks of age) male wild-type and mdx mice, we assessed ventilatory capacity, neural activation of the diaphragm and external intercostal (EIC) muscles and inspiratory pressure-generating capacity during ventilatory and non-ventilatory behaviours. We hypothesized that respiratory muscle weakness is associated with impaired peak inspiratory pressure-generating capacity in mdx mice. Ventilatory responsiveness to hypercapnic hypoxia was determined in conscious mice by whole-body plethysmography. Diaphragm isometric and isotonic contractile properties were determined ex vivo. In anaesthetized mice, thoracic oesophageal pressure, and diaphragm and EIC electromyogram (EMG) activities were recorded during baseline conditions and sustained tracheal occlusion for 30-40s. Despite substantial diaphragm weakness, mdx mice retain the capacity to enhance ventilation during hypercapnic hypoxia. Peak volume- and flow-related measures were also maintained in anaesthetized, vagotomized mdx mice. Peak inspiratory pressure was remarkably well preserved during chemoactivated breathing, augmented breaths and maximal sustained efforts during airway obstruction in mdx mice. Diaphragm and EIC EMG activities were lower during airway obstruction in mdx compared to wild-type mice. We conclude that ventilatory capacity is preserved in young mdx mice. Despite profound respiratory muscle weakness and lower diaphragm and EIC EMG activities during high demand in mdx mice, peak inspiratory pressure is preserved, revealing adequate compensation in support of respiratory system performance, at least early in dystrophic disease. We suggest that a progressive loss of compensation during advancing disease, combined with diaphragm dysfunction, underpins the development of respiratory system morbidity in dystrophic diseases.


Asunto(s)
Diafragma/fisiopatología , Debilidad Muscular/fisiopatología , Trastornos Respiratorios/fisiopatología , Músculos Respiratorios/fisiopatología , Animales , Modelos Animales de Enfermedad , Electromiografía/métodos , Hipoxia/fisiopatología , Músculos Intercostales/fisiopatología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos mdx , Contracción Muscular/fisiología , Distrofia Muscular de Duchenne/fisiopatología , Respiración
6.
J Physiol ; 596(21): 5175-5197, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30160301

RESUMEN

KEY POINTS: Impaired ventilatory capacity and diaphragm muscle weakness are prominent features of Duchenne muscular dystrophy, with strong evidence of attendant systemic and muscle inflammation. We performed a 2-week intervention in young wild-type and mdx mice, consisting of either injection of saline or co-administration of a neutralizing interleukin-6 receptor antibody (xIL-6R) and urocortin-2 (Ucn2), a corticotrophin releasing factor receptor 2 agonist. We examined breathing and diaphragm muscle form and function. Breathing and diaphragm muscle functional deficits are improved following xIL-6R and Ucn2 co-treatment in mdx mice. The functional improvements were associated with a preservation of mdx diaphragm muscle myosin heavy chain IIx fibre complement. The concentration of the pro-inflammatory cytokine interleukin-1ß was reduced and the concentration of the anti-inflammatory cytokine interleukin-10 was increased in mdx diaphragm following drug co-treatment. Our novel findings may have implications for the development of pharmacotherapies for the dystrophinopathies with relevance for respiratory muscle performance and breathing. ABSTRACT: The mdx mouse model of Duchenne muscular dystrophy shows evidence of hypoventilation and pronounced diaphragm dysfunction. Six-week-old male mdx (n = 32) and wild-type (WT; n = 32) mice received either saline (0.9% w/v) or a co-administration of neutralizing interleukin-6 receptor antibodies (xIL-6R; 0.2 mg kg-1 ) and corticotrophin-releasing factor receptor 2 agonist (urocortin-2; 30 µg kg-1 ) subcutaneously over 2 weeks. Breathing and diaphragm muscle contractile function (ex vivo) were examined. Diaphragm structure was assessed using histology and immunofluorescence. Muscle cytokine concentration was determined using a multiplex assay. Minute ventilation and diaphragm muscle peak force at 100 Hz were significantly depressed in mdx compared with WT. Drug treatment completely restored ventilation in mdx mice during normoxia and significantly increased mdx diaphragm force- and power-generating capacity. The number of centrally nucleated muscle fibres and the areal density of infiltrates and collagen content were significantly increased in mdx diaphragm; all indices were unaffected by drug co-treatment. The abundance of myosin heavy chain (MyHC) type IIx fibres was significantly decreased in mdx diaphragm; drug co-treatment preserved MyHC type IIx complement in mdx muscle. Drug co-treatment increased the cross-sectional area of MyHC type I and IIx fibres in mdx diaphragm. The cytokines IL-1ß, IL-6, KC/GRO and TNF-α were significantly increased in mdx diaphragm compared with WT. Drug co-treatment significantly decreased IL-1ß and increased IL-10 in mdx diaphragm. Drug co-treatment had no significant effect on WT diaphragm muscle structure, cytokine concentrations or function. Recovery of breathing and diaphragm force in mdx mice was impressive in our studies, with implication for human dystrophinopathies.


Asunto(s)
Anticuerpos Neutralizantes/uso terapéutico , Distrofia Muscular de Duchenne/tratamiento farmacológico , Receptores de Interleucina-6/inmunología , Urocortinas/uso terapéutico , Animales , Anticuerpos Neutralizantes/administración & dosificación , Anticuerpos Neutralizantes/inmunología , Diafragma/metabolismo , Diafragma/fisiopatología , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos mdx , Respiración , Urocortinas/administración & dosificación
7.
J Physiol ; 595(21): 6653-6672, 2017 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-28952155

RESUMEN

KEY POINTS: Respiratory failure is a leading cause of mortality in Duchenne muscular dystrophy (DMD), but little is known about the control of breathing in DMD and animal models. We show that young (8 weeks of age) mdx mice hypoventilate during basal breathing due to reduced tidal volume. Basal CO2 production is equivalent in wild-type and mdx mice. We show that carotid bodies from mdx mice have blunted responses to hyperoxia, revealing hypoactivity in normoxia. However, carotid body, ventilatory and metabolic responses to hypoxia are equivalent in wild-type and mdx mice. Our study revealed profound muscle weakness and muscle fibre remodelling in young mdx diaphragm, suggesting severe mechanical disadvantage in mdx mice at an early age. Our novel finding of potentiated neural motor drive to breathe in mdx mice during maximal chemoactivation suggests compensatory neuroplasticity enhancing respiratory motor output to the diaphragm and probably other accessory muscles. ABSTRACT: Patients with Duchenne muscular dystrophy (DMD) hypoventilate with consequential arterial blood gas derangement relevant to disease progression. Whereas deficits in DMD diaphragm are recognized, there is a paucity of knowledge in respect of the neural control of breathing in dystrophinopathies. We sought to perform an analysis of respiratory control in a model of DMD, the mdx mouse. In 8-week-old male wild-type and mdx mice, ventilation and metabolism, carotid body afferent activity, diaphragm muscle force-generating capacity, and muscle fibre size, distribution and centronucleation were determined. Diaphragm EMG activity and responsiveness to chemostimulation was determined. During normoxia, mdx mice hypoventilated, owing to a reduction in tidal volume. Basal CO2 production was not different between wild-type and mdx mice. Carotid sinus nerve responses to hyperoxia were blunted in mdx, suggesting hypoactivity. However, carotid body, ventilatory and metabolic responses to hypoxia were equivalent in wild-type and mdx mice. Diaphragm force was severely depressed in mdx mice, with evidence of fibre remodelling and damage. Diaphragm EMG responses to chemoactivation were enhanced in mdx mice. We conclude that there is evidence of chronic hypoventilation in young mdx mice. Diaphragm dysfunction confers mechanical deficiency in mdx resulting in impaired capacity to generate normal tidal volume at rest and decreased absolute ventilation during chemoactivation. Enhanced mdx diaphragm EMG responsiveness suggests compensatory neuroplasticity facilitating respiratory motor output, which may extend to accessory muscles of breathing. Our results may have relevance to emerging treatments for human DMD aiming to preserve ventilatory capacity.


Asunto(s)
Cuerpo Carotídeo/fisiopatología , Diafragma/fisiopatología , Distrofia Muscular de Duchenne/fisiopatología , Respiración , Animales , Dióxido de Carbono/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos mdx , Oxígeno/metabolismo , Ventilación Pulmonar
8.
Exp Physiol ; 102(9): 1177-1193, 2017 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-28665499

RESUMEN

NEW FINDINGS: What is the central question of this study? We previously reported impaired upper airway dilator muscle function in the mdx mouse model of Duchenne muscular dystrophy (DMD). Our aim was to assess the effect of blocking interleukin-6 receptor signalling and stimulating corticotrophin-releasing factor receptor 2 signalling on mdx sternohyoid muscle structure and function. What is the main finding and its importance? The interventional treatment had a positive inotropic effect on sternohyoid muscle force, restoring mechanical work and power to wild-type values, reduced myofibre central nucleation and preserved the myosin heavy chain type IIb fibre complement of mdx sternohyoid muscle. These data might have implications for development of pharmacotherapies for DMD with relevance to respiratory muscle performance. The mdx mouse model of Duchenne muscular dystrophy shows evidence of impaired pharyngeal dilator muscle function. We hypothesized that inflammatory and stress-related factors are implicated in airway dilator muscle dysfunction. Six-week-old mdx (n = 26) and wild-type (WT; n = 26) mice received either saline (0.9% w/v) or a co-administration of neutralizing interleukin-6 receptor antibodies (0.2 mg kg-1 ) and corticotrophin-releasing factor receptor 2 agonist (urocortin 2; 30 µg kg-1 ) over 2 weeks. Sternohyoid muscle isometric and isotonic contractile function was examined ex vivo. Muscle fibre centronucleation and muscle cellular infiltration, collagen content, fibre-type distribution and fibre cross-sectional area were determined by histology and immunofluorescence. Muscle chemokine content was examined by use of a multiplex assay. Sternohyoid peak specific force at 100 Hz was significantly reduced in mdx compared with WT. Drug treatment completely restored force in mdx sternohyoid to WT levels. The percentage of centrally nucleated muscle fibres was significantly increased in mdx, and this was partly ameliorated after drug treatment. The areal density of infiltrates and collagen content were significantly increased in mdx sternohyoid; both indices were unaffected by drug treatment. The abundance of myosin heavy chain type IIb fibres was significantly decreased in mdx sternohyoid; drug treatment preserved myosin heavy chain type IIb complement in mdx muscle. The chemokines macrophage inflammatory protein 2, interferon-γ-induced protein 10 and macrophage inflammatory protein 3α were significantly increased in mdx sternohyoid compared with WT. Drug treatment significantly increased chemokine expression in mdx but not WT sternohyoid. Recovery of contractile function was impressive in our study, with implications for Duchenne muscular dystrophy. The precise molecular mechanisms by which the drug treatment exerts an inotropic effect on mdx sternohyoid muscle remain to be elucidated.


Asunto(s)
Anticuerpos Neutralizantes/farmacología , Hormona Liberadora de Corticotropina/metabolismo , Distrofina/metabolismo , Fibras Musculares Esqueléticas/efectos de los fármacos , Músculos Faríngeos/efectos de los fármacos , Receptores de Interleucina-6/metabolismo , Urocortinas/metabolismo , Animales , Modelos Animales de Enfermedad , Femenino , Interferón gamma/metabolismo , Masculino , Ratones , Ratones Endogámicos mdx , Contracción Muscular/efectos de los fármacos , Fibras Musculares Esqueléticas/metabolismo , Distrofia Muscular de Duchenne/tratamiento farmacológico , Distrofia Muscular de Duchenne/metabolismo , Cadenas Pesadas de Miosina/metabolismo , Miosina Tipo IIB no Muscular/metabolismo , Músculos Faríngeos/metabolismo , Músculos Respiratorios/efectos de los fármacos , Músculos Respiratorios/metabolismo
9.
Adv Exp Med Biol ; 860: 239-44, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26303487

RESUMEN

Duchenne muscular dystrophy (DMD) is a genetic disease caused by defects in the dystrophin gene resulting in loss of the structural protein dystrophin. Patients have reduced diaphragm functional capacity due to progressive muscle weakness. Respiratory morbidity in DMD is further characterised by hypoxaemic periods due to hypoventilation. DMD patients die prematurely due to respiratory and cardiac failure. In this study, we examined respiratory function in young adult male mdx (dystrophin deficient) mice (C57BL/10ScSn-Dmd(mdx)/J; n = 10) and in wild-type controls (WT; C57BL/10ScSnJ; n = 11). Breathing was assessed in unrestrained, unanaesthetised animals by whole-body plethysmography. Ventilatory parameters were recorded during air breathing and during exposure to acute hypoxia (F(i)O(2) = 0.1, 20 min). Data for the two groups of animals were compared using Student's t tests. During normoxic breathing, mdx mice had reduced breathing frequency (p = 0.011), tidal volume (p = 0.093) and minute ventilation (p = 0.033) compared to WT. Hypoxia increased minute ventilation in WT and mdx animals. Mdx mice had a significantly increased ventilatory response to hypoxia which manifest as an elevated % change from baseline for minute ventilation (p = 0.0015) compared to WT. We conclude that mdx mice have impaired normoxic ventilation suggestive of hypoventilation. Furthermore, mdx mice have an enhanced hypoxic ventilatory response compared to WT animals which we speculate may be secondary to chronic hypoxaemia. Our results indicate that a significant respiratory phenotype is evident as early as 8 weeks in the mdx mouse model of DMD.


Asunto(s)
Distrofia Muscular de Duchenne/fisiopatología , Respiración , Animales , Femenino , Hipoxia/fisiopatología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos mdx
17.
Cells ; 12(14)2023 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-37508499

RESUMEN

Chronic intermittent hypoxia (CIH)-induced redox alterations underlie diaphragm muscle dysfunction. We sought to establish if NADPH oxidase 2 (NOX2)-derived reactive oxygen species (ROS) underpin CIH-induced changes in diaphragm muscle, which manifest as impaired muscle performance. Adult male mice (C57BL/6J) were assigned to one of three groups: normoxic controls (sham); chronic intermittent hypoxia-exposed (CIH, 12 cycles/hour, 8 h/day for 14 days); and CIH + apocynin (NOX2 inhibitor, 2 mM) administered in the drinking water throughout exposure to CIH. In separate studies, we examined sham and CIH-exposed NOX2-null mice (B6.129S-CybbTM1Din/J). Apocynin co-treatment or NOX2 deletion proved efficacious in entirely preventing diaphragm muscle dysfunction following exposure to CIH. Exposure to CIH had no effect on NOX2 expression. However, NOX4 mRNA expression was increased following exposure to CIH in wild-type and NOX2 null mice. There was no evidence of overt CIH-induced oxidative stress. A NOX2-dependent increase in genes related to muscle regeneration, antioxidant capacity, and autophagy and atrophy was evident following exposure to CIH. We suggest that NOX-dependent CIH-induced diaphragm muscle weakness has the potential to affect ventilatory and non-ventilatory performance of the respiratory system. Therapeutic strategies employing NOX2 blockade may function as an adjunct therapy to improve diaphragm muscle performance and reduce disease burden in diseases characterised by exposure to CIH, such as obstructive sleep apnoea.


Asunto(s)
Diafragma , Hipoxia , Ratones , Masculino , Animales , NADPH Oxidasa 2/metabolismo , Diafragma/metabolismo , Ratones Endogámicos C57BL , Hipoxia/metabolismo , Debilidad Muscular
18.
Respir Physiol Neurobiol ; 292: 103713, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34116239

RESUMEN

Reactive oxygen species (ROS) are proposed as mediators of chronic intermittent hypoxia (CIH)-induced respiratory plasticity. We sought to determine if NADPH oxidase 2 (NOX2)-derived ROS underpin CIH-induced maladaptive changes in respiratory control. Adult male mice (C57BL/6 J) were assigned to one of three groups: normoxic controls (sham); chronic intermittent hypoxia-exposed (CIH, 12 cycles/hour, 8 h/day for 14 days); and CIH + apocynin (NOX2 inhibitor, 2 mM) given in the drinking water throughout exposure to CIH. In addition, we studied sham and CIH-exposed NOX2-null mice (B6.129S-CybbTM1Din/J). Whole-body plethysmography was used to measure breathing and metabolic parameters. Ventilation (V̇I/V̇CO2) during normoxia was unaffected by CIH, but apnoea index was increased, which was prevented by apocynin, but not by NOX2 deletion. The ventilatory response to hypercapnia following exposure to CIH was potentiated in NOX2-null mice. Our results reveal ROS-dependent influences on the control of breathing and point to antioxidant intervention as a potential adjunctive therapeutic strategy in respiratory control disorders.


Asunto(s)
Acetofenonas/farmacología , Antioxidantes/farmacología , Apnea/metabolismo , Hipoxia/metabolismo , NADPH Oxidasas/metabolismo , Respiración , Animales , Antioxidantes/administración & dosificación , Apnea/tratamiento farmacológico , Modelos Animales de Enfermedad , Hipoxia/tratamiento farmacológico , Masculino , Ratones , Ratones Endogámicos C57BL , NADPH Oxidasas/efectos de los fármacos , Respiración/efectos de los fármacos
19.
Respir Physiol Neurobiol ; 265: 49-54, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-29933052

RESUMEN

Duchenne muscular dystrophy is a fatal neuromuscular disease associated with respiratory-related morbidity and mortality. Herein, we review recent work by our group exploring deficits and compensation in the respiratory control network governing respiratory homeostasis in a pre-clinical model of DMD, the mdx mouse. Deficits at multiple sites of the network provide considerable challenges to respiratory control. However, our work has also revealed evidence of compensatory neuroplasticity in the motor drive to breathe enhancing diaphragm muscle activity during increased chemical drive. The finding may explain the preserved capacity for mdx mice to increase ventilation in response to chemoactivation. Given the profound dysfunction in the primary pump muscle of breathing, we argue that activation of accessory muscles of breathing may be especially important in mdx (and perhaps DMD). Notwithstanding the limitations resulting from respiratory muscle dysfunction, it may be possible to further leverage intrinsic physiological mechanisms serving to compensate for weak muscles in attempts to preserve or restore ventilatory capacity. We discuss current knowledge gaps and the need to better appreciate fundamental aspects of respiratory control in pre-clinical models so as to better inform intervention strategies in human DMD.


Asunto(s)
Diafragma/fisiopatología , Distrofia Muscular de Duchenne/fisiopatología , Plasticidad Neuronal/fisiología , Respiración , Animales , Modelos Animales de Enfermedad , Ratones , Ratones Endogámicos mdx
20.
Antioxidants (Basel) ; 8(12)2019 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-31771272

RESUMEN

Respiratory muscle weakness occurs due to dystrophin deficiency in Duchenne muscular dystrophy (DMD). The mdx mouse model of DMD shows evidence of impaired respiratory muscle performance with attendant inflammation and oxidative stress. We examined the effects of N-acetylcysteine (NAC) supplementation on respiratory system performance in mdx mice. Eight-week-old male wild type (n = 10) and mdx (n = 20) mice were studied; a subset of mdx (n = 10) received 1% NAC in the drinking water for 14 days. We assessed breathing, diaphragm, and external intercostal electromyogram (EMG) activities and inspiratory pressure during ventilatory and non-ventilatory behaviours. Diaphragm muscle structure and function, cytokine concentrations, glutathione status, and mRNA expression were determined. Diaphragm force-generating capacity was impaired in mdx compared with wild type. Diaphragm muscle remodelling was observed in mdx, characterized by increased muscle fibrosis, immune cell infiltration, and central myonucleation. NAC supplementation rescued mdx diaphragm function. Collagen content and immune cell infiltration were decreased in mdx + NAC compared with mdx diaphragms. The cytokines IL-1ß, IL-6 and KC/GRO were increased in mdx plasma and diaphragm compared with wild type; NAC decreased systemic IL-1ß and KC/GRO concentrations in mdx mice. We reveal that NAC treatment improved mdx diaphragm force-generating capacity associated with beneficial anti-inflammatory and anti-fibrotic effects. These data support the potential use of NAC as an adjunctive therapy in human dystrophinopathies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA