Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 571(7766): 570-575, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31243362

RESUMEN

Early detection and treatment are critical for improving the outcome of patients with cancer1. Understanding the largely uncharted biology of carcinogenesis requires deciphering molecular processes in premalignant lesions, and revealing the determinants of the intralesional immune reaction during cancer development. The adaptive immune response within tumours has previously been shown to be strongest at the earliest stage of carcinoma2,3. Here we show that immune activation and immune escape occur before tumour invasion, and reveal the relevant immune biomarkers of the pre-invasive stages of carcinogenesis in the lung. We used gene-expression profiling and multispectral imaging to analyse a dataset of 9 morphological stages of the development of lung squamous cell carcinoma, which includes 122 well-annotated biopsies from 77 patients. We identified evolutionary trajectories of cancer and immune pathways that comprise (1) a linear increase in proliferation and DNA repair from normal to cancerous tissue; (2) a transitory increase of metabolism and early immune sensing, through the activation of resident immune cells, in low-grade pre-invasive lesions; (3) the activation of immune responses and immune escape through immune checkpoints and suppressive interleukins from high-grade pre-invasive lesions; and, ultimately, (4) the activation of the epithelial-mesenchymal transition in the invasive stage of cancer. We propose that carcinogenesis in the lung involves a dynamic co-evolution of pre-invasive bronchial cells and the immune response. These findings highlight the need to develop immune biomarkers for early detection as well as immunotherapy-based chemopreventive approaches for individuals who are at high risk of developing lung cancer.


Asunto(s)
Carcinogénesis/inmunología , Carcinogénesis/patología , Carcinoma de Células Escamosas/inmunología , Carcinoma de Células Escamosas/patología , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/patología , Escape del Tumor/inmunología , Adulto , Anciano , Carcinogénesis/efectos de los fármacos , Carcinogénesis/genética , Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma de Células Escamosas/genética , Detección Precoz del Cáncer , Transición Epitelial-Mesenquimal , Femenino , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Masculino , Persona de Mediana Edad , Invasividad Neoplásica , Escape del Tumor/efectos de los fármacos , Escape del Tumor/genética , Microambiente Tumoral
2.
Nucleic Acids Res ; 50(6): 3190-3202, 2022 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-35234910

RESUMEN

Bovine leukemia virus (BLV)-induced tumoral development is a multifactorial phenomenon that remains incompletely understood. Here, we highlight the critical role of the cellular CCCTC-binding factor (CTCF) both in the regulation of BLV transcriptional activities and in the deregulation of the three-dimensional (3D) chromatin architecture surrounding the BLV integration site. We demonstrated the in vivo recruitment of CTCF to three conserved CTCF binding motifs along the provirus. Next, we showed that CTCF localized to regions of transitions in the histone modifications profile along the BLV genome and that it is implicated in the repression of the 5'Long Terminal Repeat (LTR) promoter activity, thereby contributing to viral latency, while favoring the 3'LTR promoter activity. Finally, we demonstrated that BLV integration deregulated the host cellular 3D chromatin organization through the formation of viral/host chromatin loops. Altogether, our results highlight CTCF as a new critical effector of BLV transcriptional regulation and BLV-induced physiopathology.


Asunto(s)
Virus de la Leucemia Bovina , Latencia del Virus , Factor de Unión a CCCTC/metabolismo , Cromatina , Virus de la Leucemia Bovina/genética , Virus de la Leucemia Bovina/metabolismo , Regiones Promotoras Genéticas , Secuencias Repetidas Terminales/genética
3.
Proc Natl Acad Sci U S A ; 116(13): 6298-6307, 2019 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-30846549

RESUMEN

Natural regulatory T cells (nTregs) ensure the control of self-tolerance and are currently used in clinical trials to alleviate autoimmune diseases and graft-versus-host disease after hematopoietic stem cell transfer. Based on CD39/CD26 markers, blood nTreg analysis revealed the presence of five different cell subsets, each representing a distinct stage of maturation. Ex vivo added microenvironmental factors, including IL-2, TGFß, and PGE2, direct the conversion from naive precursor to immature memory and finally from immature to mature memory cells, the latest being a no-return stage. Phenotypic and genetic characteristics of the subsets illustrate the structural parental maturation between subsets, which further correlates with the expression of regulatory factors. Regarding nTreg functional plasticity, both maturation stage and microenvironmental cytokines condition nTreg activities, which include blockade of autoreactive immune cells by cell-cell contact, Th17 and IL-10 Tr1-like activities, or activation of TCR-stimulating dendritic cell tolerization. Importantly, blood nTreg CD39/CD26 profile remained constant over a 2-y period in healthy persons but varied from person to person. Preliminary data on patients with autoimmune diseases or acute myelogenous leukemia illustrate the potential use of the nTreg CD39/CD26 profile as a blood biomarker to monitor chronic inflammatory diseases. Finally, we confirmed that naive conventional CD4 T cells, TCR-stimulated under a tolerogenic conditioned medium, could be ex vivo reprogrammed to FOXP3 lineage Tregs, and further found that these cells were exclusively committed to suppressive function under all microenvironmental contexts.


Asunto(s)
Microambiente Celular/inmunología , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/fisiología , Apirasa/sangre , Enfermedades Autoinmunes/sangre , Enfermedades Autoinmunes/inmunología , Linfocitos T CD4-Positivos/inmunología , Citocinas/metabolismo , Células Dendríticas/inmunología , Dinoprostona/metabolismo , Dipeptidil Peptidasa 4/sangre , Factores de Transcripción Forkhead/metabolismo , Humanos , Interleucina-10/metabolismo , Interleucina-2/metabolismo , Leucemia Mieloide , Células Th17/inmunología , Factor de Crecimiento Transformador beta/metabolismo
4.
J Cell Physiol ; 234(5): 5998-6011, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30343493

RESUMEN

Interleukin-21 (IL-21) is a cytokine with potent regulatory effects on different immune cells. Recently, IL-21 has been contemplated for use in the treatment of cancers. However, the molecular mechanisms regulating human IL-21 gene expression has not yet been described. In this study, we initially studied the promoter region and identified the transcription start site. We thereafter described the essential region upstream of the transcription start site and showed the in vivo binding of NFATc2 and SP1 transcription factors to this region, in addition to their positive role in IL-21 expression. We also studied the role of microRNAs (miRNAs) in regulating IL-21 expression. We, thus, established the miRNA profile of CD4+CD45RO+ versus CD4+CD45RA+ isolated from healthy volunteers and identified a signature composed of 12 differentially expressed miRNAs. We showed that miR-302c is able to negatively regulate IL-21 expression by binding directly to its target site in the 3'-untranslated region. Moreover, after using fresh human CD4-positive T cells, we observed the high acetylation level of histone H4, an observation well in line with the already described high expression of IL-21 in CD4+CD45RO+ versus CD4+CD45RA+ T cells. Altogether, our data identified different molecular mechanisms regulating IL-21 expression.


Asunto(s)
Linfocitos T CD4-Positivos/metabolismo , Interleucinas/metabolismo , Antígenos Comunes de Leucocito/metabolismo , MicroARNs/metabolismo , Factores de Transcripción NFATC/metabolismo , Factor de Transcripción Sp1/metabolismo , Regiones no Traducidas 3' , Acetilación , Sitios de Unión , Linfocitos T CD4-Positivos/inmunología , Células HEK293 , Células HeLa , Voluntarios Sanos , Histonas/metabolismo , Humanos , Interleucinas/genética , Células Jurkat , Antígenos Comunes de Leucocito/inmunología , MicroARNs/genética , Factores de Transcripción NFATC/genética , Regiones Promotoras Genéticas , Factor de Transcripción Sp1/genética , Sitio de Iniciación de la Transcripción , Transcripción Genética
5.
J Cell Physiol ; 234(10): 17459-17472, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30805923

RESUMEN

Regulatory T cells (Tregs) are central for maintaining immune balance and their dysfunction drives the expansion of critical immunologic disorders. During the past decade, microRNAs (miRNAs) have emerged as potent regulators of gene expression among which immune-related genes and their immunomodulatory properties have been associated with different immune-based diseases. The miRNA signature of human peripheral blood (PB) CD8+ CD25 + CD127 low Tregs has not been described yet. We thus identified, using TaqMan low-density array (TLDA) technique followed by individual quantitative real-time polymerase chain reaction (qRT-PCR) confirmation, 14 miRNAs, among which 12 were downregulated whereas two were upregulated in CD8 + CD25 + CD127 low Tregs in comparison to CD8 + CD25 - T cells. In the next step, microRNA Data Integration Portal (mirDIP) was used to identify potential miRNA target sites in the 3'-untranslated region (3'-UTR) of key Treg cell-immunomodulatory genes with a special focus on interleukin 10 (IL-10) and transforming growth factor ß (TGF-ß). Having identified potential miR target sites in the 3'-UTR of IL-10 (miR-27b-3p and miR-340-5p) and TGF-ß (miR-330-3p), we showed through transfection and transduction assays that the overexpression of two underexpressed miRNAs, miR-27b-3p and miR-340-5p, downregulated IL-10 expression upon targeting its 3'-UTR. Similarly, overexpression of miR-330-3p negatively regulated TGF-ß expression. These results highlighted an important impact of the CD8 + Treg mirnome on the expression of genes with significant implication on immunosuppression. These observations could help in better understanding the mechanism(s) orchestrating Treg immunosuppressive function toward unraveling new targets for treating autoimmune pathologies and cancer.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Expresión Génica/inmunología , Interleucina-10/metabolismo , Linfocitos T Reguladores/inmunología , Factor de Crecimiento Transformador beta/metabolismo , Factores de Transcripción Forkhead/metabolismo , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica/inmunología , Humanos , MicroARNs/genética
6.
BMC Cancer ; 18(1): 429, 2018 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-29661164

RESUMEN

BACKGROUND: The relapse rate in early stage non-small cell lung cancer (NSCLC) after surgical resection is high. Prognostic biomarkers may help identify patients who may benefit from additional therapy. The Helicase-like Transcription Factor (HLTF) is a tumor suppressor, altered in cancer either by gene hypermethylation or mRNA alternative splicing. This study assessed the expression and the clinical relevance of wild-type (WT) and variant forms of HLTF RNAs in NSCLC. METHODS: We analyzed online databases (TCGA, COSMIC) for HLTF alterations in NSCLC and assessed WT and spliced HLTF mRNAs expression by RT-ddPCR in 39 lung cancer cell lines and 171 patients with resected stage I-II NSCLC. RESULTS: In silico analyses identified HLTF gene alterations more frequently in lung squamous cell carcinoma than in adenocarcinoma. In cell lines and in patients, WT and I21R HLTF mRNAs were detected, but the latter at lower level. The subgroup of 25 patients presenting a combined low WT HLTF expression and a high I21R HLTF expression had a significantly worse disease-free survival than the other 146 patients in univariate (HR 1.96, CI 1.17-3.30; p = 0.011) and multivariate analyses (HR 1.98, CI 1.15-3.40; p = 0.014). CONCLUSION: A low WT HLTF expression with a high I21R HLTF expression is associated with a poor DFS.


Asunto(s)
Biomarcadores de Tumor/genética , Carcinoma de Pulmón de Células no Pequeñas/genética , Proteínas de Unión al ADN/genética , Recurrencia Local de Neoplasia/genética , Factores de Transcripción/genética , Adulto , Anciano , Empalme Alternativo/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Metilación de ADN/genética , Supervivencia sin Enfermedad , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Recurrencia Local de Neoplasia/patología , Estadificación de Neoplasias , Pronóstico
7.
Inflamm Res ; 67(6): 467-477, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29362849

RESUMEN

Mesenchymal stromal cells (MSCs) are multipotent adult cells with relevant biological properties making them interesting tools for cell-based therapy. These cells have the ability to home to sites of injury and secrete bioactive factors as part of their therapeutic functions. However, depending on the local environment, diverse functions of MSCs can be modulated and thus can influence their therapeutic value. The specific cytokine milieu within the site of inflammation is vital in determining the fate and cell behaviors of MSCs. Indeed, inflammatory signals (called as inflammatory priming), may induce critical changes on the phenotype, multilineage potential, hematopoietic support and immunomodulatory capacity of MSCs. Thus, for appropriate clinical application of MSCs, it is important to well know and understand these effects. In summary, investigating MSC interactions with the inflammatory environment is necessary to empower the therapeutic value of MSCs.


Asunto(s)
Inflamación/inmunología , Células Madre Mesenquimatosas/inmunología , Animales , Humanos , Inmunomodulación , Fenotipo
8.
PLoS Pathog ; 11(7): e1005063, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26225566

RESUMEN

The persistence of latently infected cells in patients under combinatory antiretroviral therapy (cART) is a major hurdle to HIV-1 eradication. Strategies to purge these reservoirs are needed and activation of viral gene expression in latently infected cells is one promising strategy. Bromodomain and Extraterminal (BET) bromodomain inhibitors (BETi) are compounds able to reactivate latent proviruses in a positive transcription elongation factor b (P-TEFb)-dependent manner. In this study, we tested the reactivation potential of protein kinase C (PKC) agonists (prostratin, bryostatin-1 and ingenol-B), which are known to activate NF-κB signaling pathway as well as P-TEFb, used alone or in combination with P-TEFb-releasing agents (HMBA and BETi (JQ1, I-BET, I-BET151)). Using in vitro HIV-1 post-integration latency model cell lines of T-lymphoid and myeloid lineages, we demonstrated that PKC agonists and P-TEFb-releasing agents alone acted as potent latency-reversing agents (LRAs) and that their combinations led to synergistic activation of HIV-1 expression at the viral mRNA and protein levels. Mechanistically, combined treatments led to higher activations of P-TEFb and NF-κB than the corresponding individual drug treatments. Importantly, we observed in ex vivo cultures of CD8+-depleted PBMCs from 35 cART-treated HIV-1+ aviremic patients that the percentage of reactivated cultures following combinatory bryostatin-1+JQ1 treatment was identical to the percentage observed with anti-CD3+anti-CD28 antibodies positive control stimulation. Remarkably, in ex vivo cultures of resting CD4+ T cells isolated from 15 HIV-1+ cART-treated aviremic patients, the combinations bryostatin-1+JQ1 and ingenol-B+JQ1 released infectious viruses to levels similar to that obtained with the positive control stimulation. The potent effects of these two combination treatments were already detected 24 hours post-stimulation. These results constitute the first demonstration of LRA combinations exhibiting such a potent effect and represent a proof-of-concept for the co-administration of two different types of LRAs as a potential strategy to reduce the size of the latent HIV-1 reservoirs.


Asunto(s)
Brioestatinas/farmacología , Linfocitos T CD4-Positivos/virología , Regulación Viral de la Expresión Génica/efectos de los fármacos , VIH-1/efectos de los fármacos , Linfocitos T CD4-Positivos/efectos de los fármacos , Diterpenos/metabolismo , VIH-1/fisiología , Humanos , Factor B de Elongación Transcripcional Positiva/metabolismo , Activación Viral/efectos de los fármacos , Latencia del Virus/efectos de los fármacos
9.
Retrovirology ; 13(1): 33, 2016 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-27141823

RESUMEN

BACKGROUND: Bovine Leukemia Virus (BLV) is a deltaretrovirus closely related to the Human T cell leukemia virus-1 (HTLV-1). Cattle are the natural host of BLV where it integrates into B-cells, producing a lifelong infection. Most infected animals remain asymptomatic but following a protracted latency period about 5 % develop an aggressive leukemia/lymphoma, mirroring the disease trajectory of HTLV-1. The mechanisms by which these viruses provoke cellular transformation remain opaque. In both viruses little or no transcription is observed from the 5'LTR in tumors, however the proviruses are not transcriptionally silent. In the case of BLV a cluster of RNA polymerase III transcribed microRNAs are highly expressed, while the HTLV-1 antisense transcript HBZ is consistently found in all tumors examined. RESULTS: Here, using RNA-seq, we demonstrate that the BLV provirus also constitutively expresses antisense transcripts in all leukemic and asymptomatic samples examined. The first transcript (AS1) can be alternately polyadenylated, generating a transcript of ~600 bp (AS1-S) and a less abundant transcript of ~2200 bp (AS1-L). Alternative splicing creates a second transcript of ~400 bp (AS2). The coding potential of AS1-S/L is ambiguous, with a small open reading frame of 264 bp, however the transcripts are primarily retained in the nucleus, hinting at a lncRNA-like role. The AS1-L transcript overlaps the BLV microRNAs and using high throughput sequencing of RNA-ligase-mediated (RLM) 5'RACE, we show that the RNA-induced silencing complex (RISC) cleaves AS1-L. Furthermore, experiments using altered BLV proviruses with the microRNAs either deleted or inverted point to additional transcriptional interference between the two viral RNA species. CONCLUSIONS: The identification of novel viral antisense transcripts shows the BLV provirus to be far from silent in tumors. Furthermore, the consistent expression of these transcripts in both leukemic and nonmalignant clones points to a vital role in the life cycle of the virus and its tumorigenic potential. Additionally, the cleavage of the AS1-L transcript by the BLV encoded microRNAs and the transcriptional interference between the two viral RNA species suggest a shared role in the regulation of BLV.


Asunto(s)
Virus de la Leucemia Bovina/genética , Leucemia de Células B/virología , Linfoma de Células B/virología , MicroARNs/genética , ARN sin Sentido/genética , ARN Viral/genética , Transcripción Genética , Animales , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Bovinos , Leucosis Bovina Enzoótica/virología , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , MicroARNs/metabolismo , ARN Viral/metabolismo , Proteínas de los Retroviridae/genética , Ovinos , Secuencias Repetidas Terminales
10.
Proc Natl Acad Sci U S A ; 110(6): 2306-11, 2013 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-23345446

RESUMEN

Viral tumor models have significantly contributed to our understanding of oncogenic mechanisms. How transforming delta-retroviruses induce malignancy, however, remains poorly understood, especially as viral mRNA/protein are tightly silenced in tumors. Here, using deep sequencing of broad windows of small RNA sizes in the bovine leukemia virus ovine model of leukemia/lymphoma, we provide in vivo evidence of the production of noncanonical RNA polymerase III (Pol III)-transcribed viral microRNAs in leukemic B cells in the complete absence of Pol II 5'-LTR-driven transcriptional activity. Processed from a cluster of five independent self-sufficient transcriptional units located in a proviral region dispensable for in vivo infectivity, bovine leukemia virus microRNAs represent ∼40% of all microRNAs in both experimental and natural malignancy. They are subject to strong purifying selection and associate with Argonautes, consistent with a critical function in silencing of important cellular and/or viral targets. Bovine leukemia virus microRNAs are strongly expressed in preleukemic and malignant cells in which structural and regulatory gene expression is repressed, suggesting a key role in tumor onset and progression. Understanding how Pol III-dependent microRNAs subvert cellular and viral pathways will contribute to deciphering the intricate perturbations that underlie malignant transformation.


Asunto(s)
Leucosis Bovina Enzoótica/genética , Leucosis Bovina Enzoótica/virología , Virus de la Leucemia Bovina/genética , Leucemia de Células B/genética , Leucemia de Células B/virología , Linfoma de Células B/genética , Linfoma de Células B/virología , MicroARNs/genética , ARN Viral/genética , Animales , Proteínas Argonautas/metabolismo , Secuencia de Bases , Bovinos , Línea Celular Tumoral , Modelos Animales de Enfermedad , Expresión Génica , Proteínas del Grupo de Alta Movilidad/genética , Virus Linfotrópico T Tipo 1 Humano/genética , Humanos , Leucemia de Células B/veterinaria , Leucemia-Linfoma de Células T del Adulto/genética , Leucemia-Linfoma de Células T del Adulto/virología , Linfoma de Células B/veterinaria , MicroARNs/química , MicroARNs/metabolismo , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , ARN Polimerasa III/metabolismo , ARN Neoplásico/genética , ARN Neoplásico/metabolismo , ARN Viral/química , ARN Viral/metabolismo , Análisis de Secuencia de ARN , Homología de Secuencia de Ácido Nucleico , Ovinos , Enfermedades de las Ovejas/genética , Enfermedades de las Ovejas/virología , Secuencias Repetidas Terminales
11.
J Transl Med ; 12: 218, 2014 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-25090912

RESUMEN

BACKGROUND: Recently, regulatory T (Treg) cells have gained interest in the fields of immunopathology, transplantation and oncoimmunology. Here, we investigated the microRNA expression profile of human natural CD8(+)CD25(+) Treg cells and the impact of microRNAs on molecules associated with immune regulation. METHODS: We purified human natural CD8(+) Treg cells and assessed the expression of FOXP3 and CTLA-4 by flow cytometry. We have also tested the ex vivo suppressive capacity of these cells in mixed leukocyte reactions. Using TaqMan low-density arrays and microRNA qPCR for validation, we could identify a microRNA 'signature' for CD8(+)CD25(+)FOXP3(+)CTLA-4(+) natural Treg cells. We used the 'TargetScan' and 'miRBase' bioinformatics programs to identify potential target sites for these microRNAs in the 3'-UTR of important Treg cell-associated genes. RESULTS: The human CD8(+)CD25(+) natural Treg cell microRNA signature includes 10 differentially expressed microRNAs. We demonstrated an impact of this signature on Treg cell biology by showing specific regulation of FOXP3, CTLA-4 and GARP gene expression by microRNA using site-directed mutagenesis and a dual-luciferase reporter assay. Furthermore, we used microRNA transduction experiments to demonstrate that these microRNAs impacted their target genes in human primary Treg cells ex vivo. CONCLUSIONS: We are examining the biological relevance of this 'signature' by studying its impact on other important Treg cell-associated genes. These efforts could result in a better understanding of the regulation of Treg cell function and might reveal new targets for immunotherapy in immune disorders and cancer.


Asunto(s)
Linfocitos T CD8-positivos/metabolismo , Perfilación de la Expresión Génica , MicroARNs/genética , Linfocitos T Reguladores/metabolismo , Regiones no Traducidas 3'/genética , Antígenos CD/metabolismo , Antígeno CTLA-4/metabolismo , Proliferación Celular , Separación Celular , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Regulación de la Expresión Génica , Células HeLa , Humanos , Lentivirus/metabolismo , Proteínas de la Membrana/metabolismo , MicroARNs/metabolismo , Transcripción Genética , Transducción Genética
12.
Proc Natl Acad Sci U S A ; 108(47): 18995-9000, 2011 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-22065791

RESUMEN

Immune suppressive activities exerted by regulatory T-cell subsets have several specific functions, including self-tolerance and regulation of adaptive immune reactions, and their dysfunction can lead to autoimmune diseases and contribute to AIDS and cancer. Two functionally distinct regulatory T-cell subsets are currently identified in peripheral tissues: thymus-developed natural T regulatory cells (nTregs) controlling self-tolerance and antiinflammatory IL-10-secreting type 1 regulatory T cells (Tr1) derived from Ag-stimulated T cells, which regulate inflammation-dependent adaptive immunity and minimize immunopathology. We establish herein that cell contact-mediated nTreg regulatory function is inhibited by inflammation, especially in the presence of the complement C3b receptor (CD46). Instead, as with other T-cell subsets, the latter inflammatory conditions of stimulation skew nTreg differentiation to Tr1 cells secreting IL-10, an effect potentiated by IFN-α. The clinical relevance of these findings was verified in a study of 152 lupus patients, in which we showed that lupus nTreg dysfunction is not due to intrinsic defects but is rather induced by C3b stimulation of CD46 and IFN-α and that these immune components of inflammation are directly associated with active lupus. These results provide a rationale for using anti-IFN-α Ab immunotherapy in lupus patients.


Asunto(s)
Diferenciación Celular/inmunología , Activación de Complemento/inmunología , Inmunoterapia/métodos , Interferón-alfa/metabolismo , Lupus Eritematoso Sistémico/inmunología , Proteína Cofactora de Membrana/metabolismo , Linfocitos T Reguladores/inmunología , Anticuerpos Monoclonales , Complemento C3b/inmunología , Cartilla de ADN/genética , Citometría de Flujo , Humanos , Interferón-alfa/inmunología , Interleucina-10/inmunología , Leucocitos Mononucleares , Modelos Lineales , Proteína Cofactora de Membrana/inmunología , Reacción en Cadena en Tiempo Real de la Polimerasa
13.
Commun Med (Lond) ; 4(1): 52, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38504093

RESUMEN

BACKGROUND: Among people living with HIV, elite controllers (ECs) maintain an undetectable viral load, even without receiving anti-HIV therapy. In non-EC patients, this therapy leads to marked improvement, including in immune parameters, but unlike ECs, non-EC patients still require ongoing treatment and experience co-morbidities. In-depth, comprehensive immune analyses comparing EC and treated non-EC patients may reveal subtle, consistent differences. This comparison could clarify whether elevated circulating interferon-alpha (IFNα) promotes widespread immune cell alterations and persists post-therapy, furthering understanding of why non-EC patients continue to need treatment. METHODS: Levels of IFNα in HIV-infected EC and treated non-EC patients were compared, along with blood immune cell subset distribution and phenotype, and functional capacities in some cases. In addition, we assessed mechanisms potentially associated with IFNα overload. RESULTS: Treatment of non-EC patients results in restoration of IFNα control, followed by marked improvement in distribution numbers, phenotypic profiles of blood immune cells, and functional capacity. These changes still do not lead to EC status, however, and IFNα can induce these changes in normal immune cell counterparts in vitro. Hypothesizing that persistent alterations could arise from inalterable effects of IFNα at infection onset, we verified an IFNα-related mechanism. The protein induces the HIV coreceptor CCR5, boosting HIV infection and reducing the effects of anti-HIV therapies. EC patients may avoid elevated IFNα following on infection with a lower inoculum of HIV or because of some unidentified genetic factor. CONCLUSIONS: Early control of IFNα is essential for better prognosis of HIV-infected patients.


The treatment for HIV, known as antiretroviral therapy (ART), does not cure HIV but enables individuals to live longer, healthier lives. In this study, we compared immune responses between elite controllers (ECs), who control their HIV infection without any treatment, and ART-treated and untreated patients. We demonstrate that IFNα, a small protein crucial in controlling immune system, is excessively produced at the onset of HIV infection and at levels that persist, resulting in poor HIV control without therapy. We show a mechanism for lack of control of HIV by IFNα. While inhibiting HIV, IFNα also simultaneously increases the HIV co-receptor, CCR5, thereby facilitating virus entry into the target cell. This is avoided by ECs which we hypothesize is associated with a lower infectious inoculum of HIV.

14.
Commun Med (Lond) ; 4(1): 53, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38504106

RESUMEN

BACKGROUND: A complete understanding of the different steps of HIV replication and an effective drug combination have led to modern antiretroviral regimens that block HIV replication for decades, but these therapies are not curative and must be taken for life. "Elite controllers" (ECs) is a term for the 0.5% of HIV-infected persons requiring no antiretroviral therapy, whose status may point the way toward a functional HIV cure. Defining the mechanisms of this control may be key to understanding how to replicate this functional cure in others. METHODS: In ECs and untreated non-EC patients, we compared IFNα serum concentration, distribution of immune cell subsets, and frequency of cell markers associated with immune dysfunction. We also investigated the effect of an elevated dose of IFNα on distinct subsets within dendritic cells, natural killer cells, and CD4+ and CD8 + T cells. RESULTS: Serum IFNα was undetectable in ECs, but all immune cell subsets from untreated non-EC patients were structurally and functionally impaired. We also show that the altered phenotype and function of these cell subsets in non-EC patients can be recapitulated when cells are stimulated in vitro with high-dose IFNα. CONCLUSIONS: Elevated IFNα is a key mediator of HIV pathogenesis.


Currently, HIV infection is not curable, but infected individuals can manage their condition by taking daily doses of antiretroviral therapy. Some individuals, known as elite controllers (ECs), control their infection without antiretroviral treatment, and studying how their immune system responds to HIV exposure could lead to a potential cure for others. Here, we compare immune cell responses between ECs and untreated non-ECs. We find that IFNα, a small protein with an important role in controlling white blood cell activity, is produced in excess in immune cells from non-ECs compared with ECs during early infection. This insight provides an important clue for the future development of a targeted cure for HIV.

15.
J Biol Chem ; 287(13): 9910-9922, 2012 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-22294691

RESUMEN

Regulatory T cells (Tregs) are characterized by a high expression of IL-2 receptor α chain (CD25) and of forkhead box P3 (FOXP3), the latter being essential for their development and function. Another major player in the regulatory function is the cytotoxic T-lymphocyte associated molecule-4 (CTLA-4) that inhibits cytotoxic responses. However, the regulation of CTLA-4 expression remains less well explored. We therefore studied the microRNA signature of circulating CD4(+) Tregs isolated from adult healthy donors and identified a signature composed of 15 differentially expressed microRNAs. Among those, miR-24, miR-145, and miR-210 were down-regulated in Tregs compared with controls and were found to have potential target sites in the 3'-UTR of FOXP3 and CTLA-4; miR-24 and miR-210 negatively regulated FOXP3 expression by directly binding to their two target sites in its 3'-UTR. On the other hand, miR-95, which is highly expressed in adult peripheral blood Tregs, positively regulated FOXP3 expression via an indirect mechanism yet to be identified. Finally, we showed that miR-145 negatively regulated CTLA-4 expression in human CD4(+) adult peripheral blood Tregs by binding to its target site in CTLA-4 transcript 3'-UTR. To our knowledge, this is the first identification of a human adult peripheral blood CD4(+) Treg microRNA signature. Moreover, unveiling one mechanism regulating CTLA-4 expression is novel and may lead to a better understanding of the regulation of this crucial gene.


Asunto(s)
Regiones no Traducidas 3'/fisiología , Antígeno CTLA-4/biosíntesis , Factores de Transcripción Forkhead/biosíntesis , Regulación de la Expresión Génica/fisiología , MicroARNs/biosíntesis , Linfocitos T Reguladores/metabolismo , Adulto , Antígeno CTLA-4/genética , Femenino , Factores de Transcripción Forkhead/genética , Perfilación de la Expresión Génica , Células HEK293 , Células HeLa , Humanos , Masculino , MicroARNs/genética
16.
J Transl Med ; 11: 31, 2013 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-23391324

RESUMEN

BACKGROUND: MicroRNAs (miRNAs) are small (19-22-nt) single-stranded noncoding RNA molecules whose deregulation of expression can contribute to human disease including the multistep processes of carcinogenesis in human. Circulating miRNAs are emerging biomarkers in many diseases and cancers such as type 2 diabetes, pulmonary disease, colorectal cancer, and gastric cancer among others; however, defining a plasma miRNA signature in acute myeloblastic leukemia (AML) that could serve as a biomarker for diagnosis or in the follow-up has not been done yet. METHODS: TaqMan miRNA microarray was performed to identify deregulated miRNAs in the plasma of AML patients. Quantitative real-time RT-PCR was used to validate the results. Receiver-operator characteristic (ROC) curve analysis was conducted to evaluate the diagnostic accuracy of the highly and significantly identified deregulated miRNA(s) as potential candidate biomarker(s). RESULTS: The plasma expression level of let-7d, miR-150, miR-339, and miR-342 was down-regulated whilst that of let-7b, and miR-523 was up-regulated in the AML group at diagnosis compared to healthy controls. ROC curve analyses revealed an AUC (the areas under the ROC curve) of 0.835 (95% CI: 0.7119- 0.9581; P<0.0001) and 0.8125 (95% CI: 0.6796-0.9454; P=0.0005) for miR-150, and miR-342 respectively. Combined ROC analyses using these 2 miRNAs revealed an elevated AUC of 0.86 (95% CI: 0.7819-0.94; P<0.0001) indicating the additive effect in the diagnostic value of these 2 miRNAs. QRT-PCR results showed that the expression level of these two miRs in complete remission AML patients resembled that of healthy controls. CONCLUSIONS: Our findings indicated that plasma miR-150 and miR-342 are novel important promising biomarkers in the diagnosis of AML. These novel and promising markers warrant validation in larger prospective studies.


Asunto(s)
Biomarcadores de Tumor/sangre , Leucemia Mieloide Aguda/sangre , MicroARNs/sangre , Área Bajo la Curva , Biomarcadores de Tumor/genética , Estudios de Casos y Controles , Perfilación de la Expresión Génica , Humanos , Leucemia Mieloide Aguda/genética , MicroARNs/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Curva ROC , Reacción en Cadena en Tiempo Real de la Polimerasa
17.
Nucleic Acids Res ; 39(22): 9559-73, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21890901

RESUMEN

Bovine leukemia virus expression relies on its chromatin organization after integration into the host cell genome. Proviral latency, which results from transcriptional repression in vivo, represents a viral strategy to escape the host immune system and likely allows for tumor progression. Here, we discriminated two types of latency: an easily reactivable latent state of the YR2 provirus and a 'locked' latent state of the L267 provirus. The defective YR2 provirus was characterized by the presence of nuclease hypersensitive sites at the U3/R junction and in the R/U5 region of the 5'-long terminal repeat (5'-LTR), whereas the L267 provirus displayed a closed chromatin configuration at the U3/R junction. Reactivation of viral expression in YR2 cells by the phorbol 12-myristate 13-acetate (PMA) plus ionomycin combination was accompanied by a rapid but transient chromatin remodeling in the 5'-LTR, leading to an increased PU.1 and USF-1/USF-2 recruitment in vivo sustained by PMA/ionomycin-mediated USF phosphorylation. In contrast, viral expression was not reactivated by PMA/ionomycin in L267 cells, because the 5'-LTR U3/R region remained inaccessible to nucleases and hypermethylated at CpG dinucleotides. Remarkably, we elucidated the BLV 5'-LTR chromatin organization in PBMCs isolated from BLV-infected cows, thereby depicting the virus hiding in vivo in its natural host.


Asunto(s)
Cromatina/química , Virus de la Leucemia Bovina/genética , Regiones Promotoras Genéticas , Activación Transcripcional , Animales , Sitios de Unión , Ionóforos de Calcio/farmacología , Bovinos , Línea Celular , Cromatina/efectos de los fármacos , Ensamble y Desensamble de Cromatina , Ionomicina/farmacología , Nucleosomas/química , Proteínas Proto-Oncogénicas/metabolismo , Factor de Transcripción Sp1/metabolismo , Secuencias Repetidas Terminales , Acetato de Tetradecanoilforbol/farmacología , Transactivadores/metabolismo , Factores Estimuladores hacia 5'/metabolismo
18.
Trends Biochem Sci ; 33(7): 339-49, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18585916

RESUMEN

Most nuclear factor-kappaB (NF-kappaB) inducers converge to activate the IkappaB kinase (IKK) complex, leading to NF-kappaB nuclear accumulation. However, depending on the inducer and the cell line, the subset of NF-kappaB-induced genes is different, underlining a complex regulation network. Recent findings have begun to delineate that histone and non-histone protein acetylation is involved, directly and indirectly, in controlling the duration, strength and specificity of the NF-kappaB-activating signaling pathway at multiple levels. Acetylation and deacetylation events, in combination with other post-translational protein modifications, generate an 'NF-kappaB-signaling code' and regulate NF-kappaB-dependent gene transcription in an inducer- and promoter-dependent manner. Indeed, the intricate involvement of histone acetyltransferases and histone deacetylases modulates both the NF-kappaB-signaling pathway and the transcriptional transactivation of NF-kappaB-dependent genes.


Asunto(s)
Histona Acetiltransferasas/metabolismo , Histona Desacetilasas/metabolismo , FN-kappa B/metabolismo , Transducción de Señal/fisiología , Animales , Humanos , Modelos Biológicos
19.
Res Sq ; 2023 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-37214795

RESUMEN

Like EC, we find that ART-treated patients control serum IFNα concentration and show few immune cell alterations enabling a healthy but fragile medical status. However, treatment interruption leads to elevated IFNα reflecting virus production indicating that like EC, ART does not achieve a virological cure. The immune system becomes overwhelmed by multiple immune cell abnormalities as found in untreated patients. These are chiefly mediated by elevated IFNα inducing signaling checkpoints abnormalities, including PD1, in cytotoxic immune cells. Importantly, during acute infection, elevated IFNα correlated with HIV load and we found that IFNα enhances CCR5, the HIV coreceptor in CD4+ T-cells, impairing its anti-viral response and accounting for the pathogenic vicious cycle: HIV → IFNα ↗ → infected CD4+ T-cells ↗ →HIV ↗. This study opens immunotherapeutic perspectives showing the need to control IFNα in order to convert ART patients into EC.

20.
Res Sq ; 2023 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-37215045

RESUMEN

Advances in HIV therapy came from understanding its replication. Further progress toward "functional cure" -no therapy needed as found in Elite Controllers (EC)- may come from insights in pathogenesis and avoidance by EC. Here we show that all immune cells from HIV-infected persons are impaired in non-EC, but not in EC. Since HIV infects few cell types, these results suggest an additional mediator of pathogenesis. We identify that mediator as elevated pathogenic IFNα, controlled by EC likely by their preserved potent NK-cells and later by other killer cells. Since the earliest days of infection predict outcome genetic or chance events must be key to EC, and since we found no unique immune parameter at the onset, we suggest a chance infection with a lower HIV inoculum. These results offer an additional approach toward functional cure: a judicious targeting of IFNα for all non-EC patients.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA