Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
PLoS Pathog ; 12(7): e1005763, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27467575

RESUMEN

A major cause of the paucity of new starting points for drug discovery is the lack of interaction between academia and industry. Much of the global resource in biology is present in universities, whereas the focus of medicinal chemistry is still largely within industry. Open source drug discovery, with sharing of information, is clearly a first step towards overcoming this gap. But the interface could especially be bridged through a scale-up of open sharing of physical compounds, which would accelerate the finding of new starting points for drug discovery. The Medicines for Malaria Venture Malaria Box is a collection of over 400 compounds representing families of structures identified in phenotypic screens of pharmaceutical and academic libraries against the Plasmodium falciparum malaria parasite. The set has now been distributed to almost 200 research groups globally in the last two years, with the only stipulation that information from the screens is deposited in the public domain. This paper reports for the first time on 236 screens that have been carried out against the Malaria Box and compares these results with 55 assays that were previously published, in a format that allows a meta-analysis of the combined dataset. The combined biochemical and cellular assays presented here suggest mechanisms of action for 135 (34%) of the compounds active in killing multiple life-cycle stages of the malaria parasite, including asexual blood, liver, gametocyte, gametes and insect ookinete stages. In addition, many compounds demonstrated activity against other pathogens, showing hits in assays with 16 protozoa, 7 helminths, 9 bacterial and mycobacterial species, the dengue fever mosquito vector, and the NCI60 human cancer cell line panel of 60 human tumor cell lines. Toxicological, pharmacokinetic and metabolic properties were collected on all the compounds, assisting in the selection of the most promising candidates for murine proof-of-concept experiments and medicinal chemistry programs. The data for all of these assays are presented and analyzed to show how outstanding leads for many indications can be selected. These results reveal the immense potential for translating the dispersed expertise in biological assays involving human pathogens into drug discovery starting points, by providing open access to new families of molecules, and emphasize how a small additional investment made to help acquire and distribute compounds, and sharing the data, can catalyze drug discovery for dozens of different indications. Another lesson is that when multiple screens from different groups are run on the same library, results can be integrated quickly to select the most valuable starting points for subsequent medicinal chemistry efforts.


Asunto(s)
Antimaláricos/uso terapéutico , Conjuntos de Datos como Asunto , Descubrimiento de Drogas/métodos , Malaria/tratamiento farmacológico , Enfermedades Desatendidas/tratamiento farmacológico , Evaluación Preclínica de Medicamentos , Humanos , Bibliotecas de Moléculas Pequeñas
2.
Methods Mol Biol ; 565: 159-86, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19551362

RESUMEN

The integration of fluorescent microscopy imaging technologies and image analysis into high-content screening (HCS) has been applied throughout the drug discovery pipeline to identify, evaluate, and advance compounds from early lead generation through preclinical candidate selection. In this chapter we describe the development, validation, and implementation of an HCS assay to screen compounds from a kinase-focused small-molecule library to identify inhibitors of the p38 pathway using the GE InCell 3000 automated imaging platform. The assay utilized a genetically modified HeLa cell line stably expressing mitogen-activated, protein-activating protein kinase-2 fused to enhanced green fluorescent protein (MK2-EGFP) and measured the subcellular distribution of the MK2-EGFP as a direct readout of p38 activation. The MK2-EGFP translocation assay performed in 384-well glass bottom microtiter plates exhibited a robust Z-factor of 0.46 and reproducible EC50 and IC50 determinations for activators and inhibitors, respectively. A total of 32,891 compounds were screened in singlicate at 50 microM and 156 were confirmed as inhibitors of p38-mediated MK2-EGFP translocation in follow-up IC50 concentration response curves. Thirty-one compounds exhibited IC50s less than 1 microM, and at least one novel structural class of p38 inhibitor was identified using this HCA/HCS chemical biology screening approach.


Asunto(s)
Evaluación Preclínica de Medicamentos/métodos , Inhibidores Enzimáticos/análisis , Microscopía Confocal/métodos , Proteínas Quinasas p38 Activadas por Mitógenos/antagonistas & inhibidores , Calcio/metabolismo , Células HeLa , Humanos
3.
Parasit Vectors ; 10(1): 341, 2017 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-28724438

RESUMEN

BACKGROUND: The cat flea, Ctenocephalides felis felis (C. felis), is a cosmopolitan hematophagous ectoparasite, and is considered to be the most prevalent flea species in both Europe and the USA. Clinical signs frequently associated with flea bites include pruritus, dermatitis and in severe cases even pyodermatitis and alopecia. Ctenocephalides felis is also a vector for several pathogens and is an intermediate host for the cestode Dipylidium caninum. Treatment of cats with a fast-acting pulicide, that is persistently effective in protecting the animal against re-infestation, is therefore imperative to their health. In addition, a rapid onset of activity ("speed of kill") may also reduce the risks of disease transmission and flea allergic dermatitis. The aim of this study was to evaluate the in vitro insecticidal activity and potential synergism between dinotefuran and fipronil against C. felis. A further aim was to evaluate the onset of activity and residual speed of kill of the combination in vivo on cats artificially infested with C. felis. METHODS: In the first study, the insecticidal activity of dinotefuran and fipronil separately and dinotefuran/fipronil (DF) in combination, at a fixed ratio (2:1), was evaluated using an in vitro coated-vial bioassay. In the second study, the onset of activity against existing flea infestations and residual speed of kill of DF against artificial flea infestations on cats was assessed in vivo. Onset of activity against existing flea infestations was assessed in terms of knock-down effect within 2 h post-treatment and onset of speed of kill assessed at 3 h, 6 h and 12 h post-treatment. Residual speed of kill was evaluated 6 h and 48 h after infestation, over a period of six weeks post-treatment. RESULTS: In vitro results revealed that the DF combination was synergistic and more potent against fleas than either compound alone. The combination also proved effective when tested in vivo. Efficacy was > 97% [geometric mean (GM) and arithmetic mean (AM)] at 3 h after treatment, and ≥ 99.8% (GM and AM) at 6 h and 12 h post-treatment. At 6 h after flea re-infestations, the efficacy of DF remained ≥ 90.8% (GM and AM) for up to 28 days, and at 42 days post-treatment persistent efficacy was still ≥ 54.3% (GM and AM). At 48 h after flea re-infestations, DF remained almost fully effective for up to 28 days, with efficacies ≥ 99.4% (GM and AM) and was persistently ≥ 93.0% (GM and AM) effective for up to 42 days post-treatment. CONCLUSIONS: The combination of dinotefuran and fipronil in a single formulation exhibited strong synergistic insecticidal activity against C. felis in vitro, and also proved effective on artificially infested cats. This activity had a rapid onset that persisted for 6 weeks against re-infestations of C. felis on cats. The rapid curative insecticidal effect was observed as early as 3 h after treatment, and as early as 6 h after re-infestations for up to 6 weeks post-treatment. The insecticidal activity profile of DF makes it an optimal candidate for the protection of cats against flea infestations, and possibly also associated diseases.


Asunto(s)
Enfermedades de los Gatos/tratamiento farmacológico , Ctenocephalides/efectos de los fármacos , Sinergismo Farmacológico , Infestaciones por Pulgas/veterinaria , Guanidinas/administración & dosificación , Insecticidas/administración & dosificación , Neonicotinoides/administración & dosificación , Nitrocompuestos/administración & dosificación , Pirazoles/administración & dosificación , Animales , Enfermedades de los Gatos/parasitología , Gatos , Ctenocephalides/fisiología , Infestaciones por Pulgas/tratamiento farmacológico , Guanidinas/farmacología , Insecticidas/farmacología , Neonicotinoides/farmacología , Nitrocompuestos/farmacología , Pirazoles/farmacología , Análisis de Supervivencia , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA