Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Syst Biol ; 20(7): 767-798, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38755290

RESUMEN

Static gene expression programs have been extensively characterized in stem cells and mature human cells. However, the dynamics of RNA isoform changes upon cell-state-transitions during cell differentiation, the determinants and functional consequences have largely remained unclear. Here, we established an improved model for human neurogenesis in vitro that is amenable for systems-wide analyses of gene expression. Our multi-omics analysis reveals that the pronounced alterations in cell morphology correlate strongly with widespread changes in RNA isoform expression. Our approach identifies thousands of new RNA isoforms that are expressed at distinct differentiation stages. RNA isoforms mainly arise from exon skipping and the alternative usage of transcription start and polyadenylation sites during human neurogenesis. The transcript isoform changes can remodel the identity and functions of protein isoforms. Finally, our study identifies a set of RNA binding proteins as a potential determinant of differentiation stage-specific global isoform changes. This work supports the view of regulated isoform changes that underlie state-transitions during neurogenesis.


Asunto(s)
Diferenciación Celular , Neurogénesis , Neuronas , Isoformas de ARN , Humanos , Neurogénesis/genética , Diferenciación Celular/genética , Isoformas de ARN/genética , Isoformas de ARN/metabolismo , Neuronas/metabolismo , Neuronas/citología , Empalme Alternativo , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/genética , Exones/genética
2.
Cell ; 141(4): 618-31, 2010 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-20478254

RESUMEN

Adaptation to different levels of illumination is central to the function of the retina. Here, we demonstrate that levels of the miR-183/96/182 cluster, miR-204, and miR-211 are regulated by different light levels in the mouse retina. Concentrations of these microRNAs were downregulated during dark adaptation and upregulated in light-adapted retinas, with rapid decay and increased transcription being responsible for the respective changes. We identified the voltage-dependent glutamate transporter Slc1a1 as one of the miR-183/96/182 targets in photoreceptor cells. We found that microRNAs in retinal neurons decay much faster than microRNAs in nonneuronal cells. The high turnover is also characteristic of microRNAs in hippocampal and cortical neurons, and neurons differentiated from ES cells in vitro. Blocking activity reduced turnover of microRNAs in neuronal cells while stimulation with glutamate accelerated it. Our results demonstrate that microRNA metabolism in neurons is higher than in most other cells types and linked to neuronal activity.


Asunto(s)
MicroARNs/metabolismo , Neuronas/metabolismo , Animales , Adaptación a la Oscuridad , Regulación hacia Abajo , Células Madre Embrionarias , Transportador 3 de Aminoácidos Excitadores/genética , Transportador 3 de Aminoácidos Excitadores/metabolismo , Ratones , Células Fotorreceptoras de Vertebrados/metabolismo , Neuronas Retinianas/metabolismo , Regulación hacia Arriba
3.
Chem Rev ; 122(18): 14842-14880, 2022 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-36070858

RESUMEN

The widespread adoption of microfluidic devices among the neuroscience and neurobiology communities has enabled addressing a broad range of questions at the molecular, cellular, circuit, and system levels. Here, we review biomedical engineering approaches that harness the power of microfluidics for bottom-up generation of neuronal cell types and for the assembly and analysis of neural circuits. Microfluidics-based approaches are instrumental to generate the knowledge necessary for the derivation of diverse neuronal cell types from human pluripotent stem cells, as they enable the isolation and subsequent examination of individual neurons of interest. Moreover, microfluidic devices allow to engineer neural circuits with specific orientations and directionality by providing control over neuronal cell polarity and permitting the isolation of axons in individual microchannels. Similarly, the use of microfluidic chips enables the construction not only of 2D but also of 3D brain, retinal, and peripheral nervous system model circuits. Such brain-on-a-chip and organoid-on-a-chip technologies are promising platforms for studying these organs as they closely recapitulate some aspects of in vivo biological processes. Microfluidic 3D neuronal models, together with 2D in vitro systems, are widely used in many applications ranging from drug development and toxicology studies to neurological disease modeling and personalized medicine. Altogether, microfluidics provide researchers with powerful systems that complement and partially replace animal models.


Asunto(s)
Microfluídica , Ingeniería de Tejidos , Animales , Encéfalo , Humanos , Dispositivos Laboratorio en un Chip , Neuronas
4.
J Perinat Med ; 51(6): 759-762, 2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-36474335

RESUMEN

The mammalian retina lacks regenerative potency to replace damaged or degenerated cells. Therefore, traumatic or genetic insults that lead to the degeneration of retinal neurons or retinal pigment epithelium (RPE) cells alter visual perception and ultimately can lead to blindness. The advent of human stem cells and their exploitation for vision restoration approaches has boosted the field. Traditionally, animal models - mostly rodents - have been generated and used to mimic certain monogenetic hereditary diseases. Of note, some models were extremely useful to develop specific gene therapies, for example for Retinitis Pigmentosa, Leber congenital amaurosis and achromatopsia. However, complex multifactorial diseases are not well recapitulated in rodent models such as age-related macular degeneration (AMD) as rodents lack a macula. Here, human stem cells are extremely valuable to advance the development of therapies. Particularly, cell replacement therapy is of enormous importance to treat retinal degenerative diseases. Moreover, different retinal degenerative disorders require the transplantation of unique cell types. The most advanced one is to substitute the RPE cells, which stabilize the light-sensitive photoreceptors. Some diseases require also the transplantation of photoreceptors. Depending on the disease pattern, both approaches can also be combined. Within this article, I briefly feature the underlying principle of cell replacement therapies, demonstrate some successes and discuss certain shortcomings of these approaches for clinical application.


Asunto(s)
Degeneración Macular , Degeneración Retiniana , Animales , Humanos , Degeneración Retiniana/terapia , Epitelio Pigmentado de la Retina , Retina , Degeneración Macular/terapia , Células Madre , Mamíferos
5.
Biochem Biophys Res Commun ; 527(2): 343-349, 2020 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-32033753

RESUMEN

Transplantation of neural stem cells (NSCs) or NSC-derived neurons into the brain is a promising therapeutic approach to restore neuronal function. Rapid progress in the NSCs research field, particularly due to the exploitation of induced pluripotent stem cells (iPSCs), offers great potential and an unlimited source of stem cell-derived neural grafts. Studying the functional integration of these grafts into host brain tissues and their effects on each other have been boosted by the implementation of optogenetic technologies. Optogenetics provides high spatiotemporal functional manipulations of grafted or host neurons in parallel. This review aims to highlight the impact of optogenetics in neural stem cell transplantations.


Asunto(s)
Células-Madre Neurales/trasplante , Neuronas/trasplante , Optogenética/métodos , Animales , Encéfalo/citología , Encéfalo/fisiología , Humanos , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Neuronas/citología , Neuronas/metabolismo , Médula Espinal/citología , Médula Espinal/fisiología , Trasplante de Células Madre/métodos
6.
Int J Mol Sci ; 21(22)2020 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-33187246

RESUMEN

Retinal degenerative diseases lead to irreversible blindness. Decades of research into the cellular and molecular mechanisms of retinal diseases, using either animal models or human cell-derived 2D systems, facilitated the development of several therapeutic interventions. Recently, human stem cell-derived 3D retinal organoids have been developed. These self-organizing 3D organ systems have shown to recapitulate the in vivo human retinogenesis resulting in morphological and functionally similar retinal cell types in vitro. In less than a decade, retinal organoids have assisted in modeling several retinal diseases that were rather difficult to mimic in rodent models. Retinal organoids are also considered as a photoreceptor source for cell transplantation therapies to counteract blindness. Here, we highlight the development and field's improvements of retinal organoids and discuss their application aspects as human disease models, pharmaceutical testbeds, and cell sources for transplantations.


Asunto(s)
Organoides/citología , Organoides/fisiología , Retina/citología , Retina/fisiología , Visión Ocular/fisiología , Animales , Investigación Biomédica , Trasplante de Células/métodos , Humanos , Organogénesis/fisiología , Degeneración Retiniana/patología , Células Madre/citología , Células Madre/fisiología
7.
Int J Mol Sci ; 21(4)2020 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-32085662

RESUMEN

Mutations in more than 200 retina-specific genes have been associated with inherited retinal diseases. Genome editing represents a promising emerging field in the treatment of monogenic disorders, as it aims to correct disease-causing mutations within the genome. Genome editing relies on highly specific endonucleases and the capacity of the cells to repair double-strand breaks (DSBs). As DSB pathways are cell-cycle dependent, their activity in postmitotic retinal neurons, with a focus on photoreceptors, needs to be assessed in order to develop therapeutic in vivo genome editing. Three DSB-repair pathways are found in mammalian cells: Non-homologous end joining (NHEJ); microhomology-mediated end joining (MMEJ); and homology-directed repair (HDR). While NHEJ can be used to knock out mutant alleles in dominant disorders, HDR and MMEJ are better suited for precise genome editing, or for replacing entire mutation hotspots in genomic regions. Here, we analyzed transcriptomic in vivo and in vitro data and revealed that HDR is indeed downregulated in postmitotic neurons, whereas MMEJ and NHEJ are active. Using single-cell RNA sequencing analysis, we characterized the dynamics of DSB repair pathways in the transition from dividing cells to postmitotic retinal cells. Time-course bulk RNA-seq data confirmed DSB repair gene expression in both in vivo and in vitro samples. Transcriptomic DSB repair pathway profiles are very similar in adult human, macaque, and mouse retinas, but not in ground squirrel retinas. Moreover, human-induced pluripotent stem-cell-derived neurons and retinal organoids can serve as well suited in vitro testbeds for developing genomic engineering approaches in photoreceptors. Our study provides additional support for designing precise in vivo genome-editing approaches via MMEJ, which is active in mature photoreceptors.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN/genética , Edición Génica , Perfilación de la Expresión Génica , Adulto , Animales , Ciclo Celular/genética , Regulación de la Expresión Génica , Genoma , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Mamíferos/genética , Ratones , Células Fotorreceptoras de Vertebrados/metabolismo
8.
Small ; 15(27): e1901406, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31025545

RESUMEN

Electrically conductive materials that mimic physical and biological properties of tissues are urgently required for seamless brain-machine interfaces. Here, a multinetwork hydrogel combining electrical conductivity of 26 S m-1 , stretchability of 800%, and tissue-like elastic modulus of 15 kPa with mimicry of the extracellular matrix is reported. Engineering this unique set of properties is enabled by a novel in-scaffold polymerization approach. Colloidal hydrogels of the nanoclay Laponite are employed as supports for the assembly of secondary polymer networks. Laponite dramatically increases the conductivity of in-scaffold polymerized poly(ethylene-3,4-diethoxy thiophene) in the absence of other dopants, while preserving excellent stretchability. The scaffold is coated with a layer containing adhesive peptide and polysaccharide dextran sulfate supporting the attachment, proliferation, and neuronal differentiation of human induced pluripotent stem cells directly on the surface of conductive hydrogels. Due to its compatibility with simple extrusion printing, this material promises to enable tissue-mimetic neurostimulating electrodes.


Asunto(s)
Arcilla/química , Conductividad Eléctrica , Hidrogeles/química , Células Madre Pluripotentes Inducidas/citología , Nanopartículas/química , Resinas Acrílicas/química , Compuestos Bicíclicos Heterocíclicos con Puentes/química , Adhesión Celular , Humanos , Polimerizacion , Polímeros/química , Silicatos/química
9.
Acta Neuropathol ; 138(1): 67-84, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30937520

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a lethal disease characterized by motor neuron degeneration and associated with aggregation of nuclear RNA-binding proteins (RBPs), including FUS. How FUS aggregation and neurodegeneration are prevented in healthy motor neurons remain critically unanswered questions. Here, we use a combination of ALS patient autopsy tissue and induced pluripotent stem cell-derived neurons to study the effects of FUS mutations on RBP homeostasis. We show that FUS' tendency to aggregate is normally buffered by interacting RBPs, but this buffering is lost when FUS mislocalizes to the cytoplasm due to ALS mutations. The presence of aggregation-prone FUS in the cytoplasm causes imbalances in RBP homeostasis that exacerbate neurodegeneration. However, enhancing autophagy using small molecules reduces cytoplasmic FUS, restores RBP homeostasis and rescues motor function in vivo. We conclude that disruption of RBP homeostasis plays a critical role in FUS-ALS and can be treated by stimulating autophagy.


Asunto(s)
Esclerosis Amiotrófica Lateral/patología , Autofagia/fisiología , Neuronas Motoras/patología , Citoplasma/metabolismo , Humanos , Cuerpos de Inclusión/patología , Células Madre Pluripotentes Inducidas/patología , Mutación/genética , Proteína FUS de Unión a ARN/metabolismo
10.
Mol Syst Biol ; 10: 760, 2014 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-25403753

RESUMEN

Advances in cellular reprogramming and stem cell differentiation now enable ex vivo studies of human neuronal differentiation. However, it remains challenging to elucidate the underlying regulatory programs because differentiation protocols are laborious and often result in low neuron yields. Here, we overexpressed two Neurogenin transcription factors in human-induced pluripotent stem cells and obtained neurons with bipolar morphology in 4 days, at greater than 90% purity. The high purity enabled mRNA and microRNA expression profiling during neurogenesis, thus revealing the genetic programs involved in the rapid transition from stem cell to neuron. The resulting cells exhibited transcriptional, morphological and functional signatures of differentiated neurons, with greatest transcriptional similarity to prenatal human brain samples. Our analysis revealed a network of key transcription factors and microRNAs that promoted loss of pluripotency and rapid neurogenesis via progenitor states. Perturbations of key transcription factors affected homogeneity and phenotypic properties of the resulting neurons, suggesting that a systems-level view of the molecular biology of differentiation may guide subsequent manipulation of human stem cells to rapidly obtain diverse neuronal types.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Células Madre Pluripotentes Inducidas/fisiología , Proteínas del Tejido Nervioso/metabolismo , Neurogénesis , Activación Transcripcional , Encéfalo/embriología , Encéfalo/metabolismo , Diferenciación Celular , Reprogramación Celular , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Humanos
11.
Cardiovasc Res ; 120(12): 1472-1484, 2024 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-38916487

RESUMEN

AIMS: Endothelial cell (EC) dysfunction plays a key role in the initiation and progression of cardiovascular disease. However, studying these disorders in ECs from patients is challenging; hence, the use of human induced pluripotent stem cells (hiPSCs) and their in vitro differentiation into ECs represents a very promising approach. Still, the generation of hiPSC-derived ECs (hECs) remains demanding as a cocktail of growth factors and an intermediate purification step are required for hEC enrichment. Therefore, we probed the utility of a forward programming approach using transgenic hiPSC lines. METHODS AND RESULTS: We have used the transgenic hiPSC line PGP1 ETV2 isoform 2 to explore the in vitro differentiation of hECs via doxycycline-dependent induction of the ETS variant transcription factor 2 (ETV2) and compared these with a standard differentiation protocol for hECs using non-transgenic control hiPSCs. The transgenic hECs were highly enriched without an intermediate purification step and expressed-as non-transgenic hECs and human umbilical vein endothelial cells-characteristic EC markers. The viability and yield of transgenic hECs were strongly improved by applying EC growth medium during differentiation. This protocol was successfully applied in two more transgenic hiPSC lines yielding reproducible results with low line-to-line variability. Transgenic hECs displayed typical functional properties, such as tube formation and LDL uptake, and a more mature phenotype than non-transgenic hECs. Transgenic hiPSCs preferentially differentiated into the arterial lineage; this was further enhanced by adding a high concentration of vascular endothelial growth factor to the medium. We also demonstrate that complexing lentivirus with magnetic nanoparticles and application of a magnetic field enables efficient transduction of transgenic hECs. CONCLUSION: We have established a highly efficient, cost-effective, and reproducible differentiation protocol for the generation of functional hECs via forward programming. The transgenic hECs can be genetically modified and are a powerful tool for disease modelling, tissue engineering, and translational purposes.


Asunto(s)
Diferenciación Celular , Células Madre Pluripotentes Inducidas , Fenotipo , Factores de Transcripción , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Células Endoteliales/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Reproducibilidad de los Resultados , Análisis Costo-Beneficio , Factores de Tiempo , Línea Celular , Células Cultivadas , Supervivencia Celular , Reprogramación Celular , Técnicas de Reprogramación Celular
12.
Artículo en Inglés | MEDLINE | ID: mdl-37734866

RESUMEN

Optogenetics has emerged over the past 20 years as a powerful tool to investigate the various circuits underlying numerous functions, especially in neuroscience. The ability to control by light the activity of neurons has enabled the development of therapeutic strategies aimed at restoring some level of vision in blinding retinal conditions. Promising preclinical and initial clinical data support such expectations. Numerous challenges remain to be tackled (e.g., confirmation of safety, cell and circuit specificity, patterns, intensity and mode of stimulation, rehabilitation programs) on the path toward useful vision restoration.

13.
Front Neurosci ; 17: 1085282, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36968488

RESUMEN

During spaceflight, humans experience a variety of physiological changes due to deviations from familiar earth conditions. Specifically, the lack of gravity is responsible for many effects observed in returning astronauts. These impairments can include structural as well as functional changes of the brain and a decline in cognitive performance. However, the underlying physiological mechanisms remain elusive. Alterations in neuronal activity play a central role in mental disorders and altered neuronal transmission may also lead to diminished human performance in space. Thus, understanding the influence of altered gravity at the cellular and network level is of high importance. Previous electrophysiological experiments using patch clamp techniques and calcium indicators have shown that neuronal activity is influenced by altered gravity. By using multi-electrode array (MEA) technology, we advanced the electrophysiological investigation covering single-cell to network level responses during exposure to decreased (micro-) or increased (hyper-) gravity conditions. We continuously recorded in real-time the spontaneous activity of human induced pluripotent stem cell (hiPSC)-derived neural networks in vitro. The MEA device was integrated into a custom-built environmental chamber to expose the system with neuronal cultures to up to 6 g of hypergravity on the Short-Arm Human Centrifuge at the DLR Cologne, Germany. The flexibility of the experimental hardware set-up facilitated additional MEA electrophysiology experiments under 4.7 s of high-quality microgravity (10-6 to 10-5 g) in the Bremen drop tower, Germany. Hypergravity led to significant changes in activity. During the microgravity phase, the mean action potential frequency across the neural networks was significantly enhanced, whereas different subgroups of neurons showed distinct behaviors, such as increased or decreased firing activity. Our data clearly demonstrate that gravity as an environmental stimulus triggers changes in neuronal activity. Neuronal networks especially reacted to acute changes in mechanical loading (hypergravity) or de-loading (microgravity). The current study clearly shows the gravity-dependent response of neuronal networks endorsing the importance of further investigations of neuronal activity and its adaptive responses to micro- and hypergravity. Our approach provided the basis for the identification of responsible mechanisms and the development of countermeasures with potential implications on manned space missions.

14.
Nat Protoc ; 18(6): 1893-1929, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37198320

RESUMEN

Induced pluripotent stem cell-derived brain organoids enable the developmental complexities of the human brain to be deconstructed. During embryogenesis, optic vesicles (OVs), the eye primordium attached to the forebrain, develop from diencephalon. However, most 3D culturing methods generate either brain or retinal organoids individually. Here we describe a protocol to generate organoids with both forebrain entities, which we call OV-containing brain organoids (OVB organoids). In this protocol, we first induce neural differentiation (days 0-5) and collect neurospheres, which we culture in a neurosphere medium to initiate their patterning and further self-assembly (days 5-10). Then, upon transfer to spinner flasks containing OVB medium (days 10-30), neurospheres develop into forebrain organoids with one or two pigmented dots restricted to one pole, displaying forebrain entities of ventral and dorsal cortical progenitors and preoptic areas. Further long-term culture results in photosensitive OVB organoids constituting complementary cell types of OVs, including primitive corneal epithelial and lens-like cells, retinal pigment epithelia, retinal progenitor cells, axon-like projections and electrically active neuronal networks. OVB organoids provide a system to help dissect interorgan interactions between the OVs as sensory organs and the brain as a processing unit, and can help model early eye patterning defects, including congenital retinal dystrophy. To conduct the protocol, experience in sterile cell culture and maintenance of human induced pluripotent stem cells is essential; theoretical knowledge of brain development is advantageous. Furthermore, specialized expertise in 3D organoid culture and imaging for the analysis is needed.


Asunto(s)
Células Madre Pluripotentes Inducidas , Humanos , Diferenciación Celular/fisiología , Prosencéfalo , Organoides , Desarrollo Embrionario
15.
Dev Cell ; 58(22): 2416-2427.e7, 2023 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-37879337

RESUMEN

Axolotl limb regeneration is accompanied by the transient induction of cellular senescence within the blastema, the structure that nucleates regeneration. The precise role of this blastemal senescent cell (bSC) population, however, remains unknown. Here, through a combination of gain- and loss-of-function assays, we elucidate the functions and molecular features of cellular senescence in vivo. We demonstrate that cellular senescence plays a positive role during axolotl regeneration by creating a pro-proliferative niche that supports progenitor cell expansion and blastema outgrowth. Senescent cells impact their microenvironment via Wnt pathway modulation. Further, we identify a link between Wnt signaling and senescence induction and propose that bSC-derived Wnt signals facilitate the proliferation of neighboring cells in part by preventing their induction into senescence. This work defines the roles of cellular senescence in the regeneration of complex structures.


Asunto(s)
Ambystoma mexicanum , Senescencia Celular , Animales , Ambystoma mexicanum/metabolismo , Vía de Señalización Wnt , Células Madre , Proliferación Celular , Extremidades
16.
Nat Methods ; 6(2): 127-30, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19122667

RESUMEN

We developed retrograde, transsynaptic pseudorabies viruses (PRVs) with genetically encoded activity sensors that optically report the activity of connected neurons among spatially intermingled neurons in the brain. Next we engineered PRVs to express two differentially colored fluorescent proteins in a time-shifted manner to define a time period early after infection to investigate neural activity. Finally we used multiple-colored PRVs to differentiate and dissect the complex architecture of brain regions.


Asunto(s)
Proteínas Fluorescentes Verdes/análisis , Herpesvirus Suido 1/metabolismo , Proteínas Luminiscentes/análisis , Transmisión Sináptica/fisiología , Vías Visuales/virología , Animales , Técnicas Biosensibles/métodos , Encéfalo/citología , Encéfalo/fisiología , Proteínas Fluorescentes Verdes/biosíntesis , Proteínas Fluorescentes Verdes/genética , Herpesvirus Suido 1/genética , Proteínas Luminiscentes/biosíntesis , Proteínas Luminiscentes/genética , Ratones , Neuronas/fisiología , Neuronas/virología , Factores de Tiempo , Vías Visuales/fisiología , Proteína Fluorescente Roja
17.
Nat Neurosci ; 11(6): 667-75, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18432197

RESUMEN

Genetically encoded optical neuromodulators create an opportunity for circuit-specific intervention in neurological diseases. One of the diseases most amenable to this approach is retinal degeneration, where the loss of photoreceptors leads to complete blindness. To restore photosensitivity, we genetically targeted a light-activated cation channel, channelrhodopsin-2, to second-order neurons, ON bipolar cells, of degenerated retinas in vivo in the Pde6b(rd1) (also known as rd1) mouse model. In the absence of 'classical' photoreceptors, we found that ON bipolar cells that were engineered to be photosensitive induced light-evoked spiking activity in ganglion cells. The rescue of light sensitivity was selective to the ON circuits that would naturally respond to increases in brightness. Despite degeneration of the outer retina, our intervention restored transient responses and center-surround organization of ganglion cells. The resulting signals were relayed to the visual cortex and were sufficient for the animals to successfully perform optomotor behavioral tasks.


Asunto(s)
Luz , Células Bipolares de la Retina/fisiología , Degeneración Retiniana , Rodopsina/fisiología , Visión Ocular/fisiología , Animales , Conducta Animal , Modelos Animales de Enfermedad , Electroporación/métodos , Potenciales Evocados Visuales/efectos de los fármacos , Potenciales Evocados Visuales/fisiología , Potenciales Evocados Visuales/efectos de la radiación , Antagonistas de Aminoácidos Excitadores/farmacología , Regulación de la Expresión Génica/genética , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Actividad Motora/fisiología , Actividad Motora/efectos de la radiación , Técnicas de Placa-Clamp , Estimulación Luminosa/métodos , Piperazinas/farmacología , Quinoxalinas/farmacología , Células Bipolares de la Retina/efectos de la radiación , Degeneración Retiniana/patología , Degeneración Retiniana/fisiopatología , Degeneración Retiniana/terapia , Células Ganglionares de la Retina/fisiología , Factores de Tiempo , Visión Ocular/efectos de la radiación , Vías Visuales/efectos de los fármacos , Vías Visuales/fisiología , Vías Visuales/efectos de la radiación
18.
Ophthalmologie ; 119(9): 910-918, 2022 Sep.
Artículo en Alemán | MEDLINE | ID: mdl-35536395

RESUMEN

For many degenerative retinal diseases that progressively lead to blindness, no treatment options are available so far. In recent years, several innovative therapies have been experimentally explored, which are promising because they are independent of the genetic cause of the degenerative disease. One of these is optogenetics, which involves light-sensitive proteins that selectively act as ion channels or ion pumps to control the potential of the treated cell. Thus, these cells can be stimulated or inhibited by light, quasi functionally remote controlled. In this way artificial photoreceptors are induced from the remaining cells, which has already been successfully employed in animal experiments. This type of treatment is already being tested on patients and leads to an improvement in vision, but so far only data from one patient are available. The use of optogenetics additionally requires special eyeglasses to adapt the light impulses in adequate strength and wavelength for the respective optogenes. Another exciting approach is cell replacement therapy of retinal pigment epithelium (RPE) and photoreceptor cells to exchange degenerated cell material. This appears to be very successful for RPE cells in clinical trials. Obtaining human photoreceptors from stem cells is technically possible, but very laborious. The integration of the transplanted photoreceptors into the host retinal tissue also needs further optimization for broader clinical applications; however, both cell replacement and optogenetics approaches are promising, so that the translation from basic research into clinical application will be successful.


Asunto(s)
Oftalmología , Enfermedades de la Retina , Animales , Humanos , Optogenética , Retina , Enfermedades de la Retina/genética , Epitelio Pigmentado de la Retina/trasplante
19.
Methods Mol Biol ; 2501: 339-360, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35857237

RESUMEN

Spontaneous and optogenetically evoked activities of human induced pluripotent stem cell (hiPSC)-derived neurons can be assessed by patch clamp and multi-electrode array (MEA) electrophysiology. Optogenetic activation of these human neurons facilitates the characterization of their functional properties at the single neuron and circuit level. Here we showcase the preparation of hiPSC-derived neurons expressing optogenetic actuators, in vitro optogenetic stimulation and simultaneous functional recordings using patch clamp and MEA electrophysiology.


Asunto(s)
Células Madre Pluripotentes Inducidas , Optogenética , Potenciales de Acción/fisiología , Diferenciación Celular/genética , Células Cultivadas , Humanos , Neuronas
20.
Front Neurosci ; 16: 951964, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36267241

RESUMEN

Comprehensive electrophysiological characterizations of human induced pluripotent stem cell (hiPSC)-derived neuronal networks are essential to determine to what extent these in vitro models recapitulate the functional features of in vivo neuronal circuits. High-density micro-electrode arrays (HD-MEAs) offer non-invasive recording with the best spatial and temporal resolution possible to date. For 3 months, we tracked the morphology and activity features of developing networks derived from a transgenic hiPSC line in which neurogenesis is inducible by neurogenic transcription factor overexpression. Our morphological data revealed large-scale structural changes from homogeneously distributed neurons in the first month to the formation of neuronal clusters over time. This led to a constant shift in position of neuronal cells and clusters on HD-MEAs and corresponding changes in spatial distribution of the network activity maps. Network activity appeared as scarce action potentials (APs), evolved as local bursts with longer duration and changed to network-wide synchronized bursts with higher frequencies but shorter duration over time, resembling the emerging burst features found in the developing human brain. Instantaneous firing rate data indicated that the fraction of fast spiking neurons (150-600 Hz) increases sharply after 63 days post induction (dpi). Inhibition of glutamatergic synapses erased burst features from network activity profiles and confirmed the presence of mature excitatory neurotransmission. The application of GABAergic receptor antagonists profoundly changed the bursting profile of the network at 120 dpi. This indicated a GABAergic switch from excitatory to inhibitory neurotransmission during circuit development and maturation. Our results suggested that an emerging GABAergic system at older culture ages is involved in regulating spontaneous network bursts. In conclusion, our data showed that long-term and continuous microscopy and electrophysiology readouts are crucial for a meaningful characterization of morphological and functional maturation in stem cell-derived human networks. Most importantly, assessing the level and duration of functional maturation is key to subject these human neuronal circuits on HD-MEAs for basic and biomedical applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA