Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Br J Haematol ; 205(1): 175-188, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38736325

RESUMEN

B-cell precursor acute lymphoblastic leukaemia (BCP-ALL) blasts strictly depend on the transport of extra-cellular asparagine (Asn), yielding a rationale for L-asparaginase (ASNase) therapy. However, the carriers used by ALL blasts for Asn transport have not been identified yet. Exploiting RS4;11 cells as BCP-ALL model, we have found that cell Asn is lowered by either silencing or inhibition of the transporters ASCT2 or SNAT5. The inhibitors V-9302 (for ASCT2) and GluγHA (for SNAT5) markedly lower cell proliferation and, when used together, suppress mTOR activity, induce autophagy and cause a severe nutritional stress, leading to a proliferative arrest and a massive cell death in both the ASNase-sensitive RS4;11 cells and the relatively ASNase-insensitive NALM-6 cells. The cytotoxic effect is not prevented by coculturing leukaemic cells with primary mesenchymal stromal cells. Leukaemic blasts of paediatric ALL patients express ASCT2 and SNAT5 at diagnosis and undergo marked cytotoxicity when exposed to the inhibitors. ASCT2 expression is positively correlated with the minimal residual disease at the end of the induction therapy. In conclusion, ASCT2 and SNAT5 are the carriers exploited by ALL cells to transport Asn, and ASCT2 expression is associated with a lower therapeutic response. ASCT2 may thus represent a novel therapeutic target in BCP-ALL.


Asunto(s)
Sistema de Transporte de Aminoácidos ASC , Asparagina , Supervivencia Celular , Antígenos de Histocompatibilidad Menor , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Humanos , Sistema de Transporte de Aminoácidos ASC/metabolismo , Sistema de Transporte de Aminoácidos ASC/genética , Asparagina/metabolismo , Antígenos de Histocompatibilidad Menor/metabolismo , Antígenos de Histocompatibilidad Menor/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras B/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patología , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Supervivencia Celular/efectos de los fármacos , Sistema de Transporte de Aminoácidos A/metabolismo , Sistema de Transporte de Aminoácidos A/genética , Línea Celular Tumoral , Asparaginasa/farmacología , Asparaginasa/uso terapéutico , Proliferación Celular/efectos de los fármacos , Niño
2.
Appl Environ Microbiol ; : e0124424, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39150265

RESUMEN

The microbial ecology of raw milk cheeses is determined by bacteria originating from milk and milk-producing animals. Recently, it has been shown that members of the Bifidobacterium mongoliense species may become transmitted along the Parmigiano Reggiano cheese production chain and ultimately may colonize the consumer intestine. However, there is a lack of knowledge regarding the molecular mechanisms that mediate the interaction between B. mongoliense and the human gut. Based on 128 raw milk cheeses collected from different Italian regions, we isolated and characterized 10 B. mongoliense strains. Comparative genomics allowed us to unveil the presence of enzymes required for the degradation of sialylated host-glycans in B. mongoliense, corroborating the appreciable growth on de Man-Rogosa-Sharpe (MRS) medium supplemented with 3'-sialyllactose (3'-SL) or 6'-sialyllactose (6'-SL). The B. mongoliense BMONG18 was chosen, due to its superior ability to utilize 3'-SL and mucin as representative strain, to investigate its behavior when co-inoculated with other bifidobacterial species. Conversely, members of other bifidobacterial species did not appear to benefit from the presence of BMONG18, highlighting a competitive scenario for nutrient acquisition. Transcriptomic data of BMONG18 reveal no significant differences in gene expression when cultivated in a gut simulating medium (GSM), regardless of whether cheese was included or not. Furthermore, BMONG18 was shown to exhibit high adhesion capabilities to HT29-MTX human cells, in line with its colonization ability of a human host.IMPORTANCEFermented foods are nourishments produced through controlled microbial growth that play an essential role in worldwide human nutrition. Research interest in fermented foods has increased since the 80s, driven by growing awareness of their potential health benefits beyond mere nutritional content. Bifidobacterium mongoliense, previously identified throughout the production process of Parmigiano Reggiano cheese, was found to be capable of establishing itself in the intestines of its consumers. Our study underscores molecular mechanisms through which this bifidobacterial species, derived from food, interacts with the host and other gut microbiota members.

3.
Appl Environ Microbiol ; 90(2): e0201423, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38294252

RESUMEN

Bifidobacteria are among the first microbial colonizers of the human gut, being frequently associated with human health-promoting activities. In the current study, an in silico methodology based on an ecological and phylogenomic-driven approach allowed the selection of a Bifidobacterium adolescentis prototype strain, i.e., B. adolescentis PRL2023, which best represents the overall genetic content and functional features of the B. adolescentis taxon. Such features were confirmed by in vitro experiments aimed at evaluating the ability of this strain to survive in the gastrointestinal tract of the host and its ability to interact with human intestinal cells and other microbial gut commensals. In this context, co-cultivation of B. adolescentis PRL2023 and several gut commensals revealed various microbe-microbe interactions and indicated co-metabolism of particular plant-derived glycans, such as xylan.IMPORTANCEThe use of appropriate bacterial strains in experimental research becomes imperative in order to investigate bacterial behavior while mimicking the natural environment. In the current study, through in silico and in vitro methodologies, we were able to identify the most representative strain of the Bifidobacterium adolescentis species. The ability of this strain, B. adolescentis PRL2023, to cope with the environmental challenges imposed by the gastrointestinal tract, together with its ability to switch its carbohydrate metabolism to compete with other gut microorganisms, makes it an ideal choice as a B. adolescentis prototype and a member of the healthy microbiota of adults. This strain possesses a genetic blueprint appropriate for its exploitation as a candidate for next-generation probiotics.


Asunto(s)
Bifidobacterium adolescentis , Microbioma Gastrointestinal , Probióticos , Adulto , Humanos , Bifidobacterium adolescentis/genética , Bifidobacterium adolescentis/metabolismo , Microbioma Gastrointestinal/genética , Bifidobacterium/genética , Bifidobacterium/metabolismo , Filogenia
4.
J Nanobiotechnology ; 22(1): 45, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38291460

RESUMEN

Amorphous silica nanoparticles (ASNP) are among the nanomaterials that are produced in large quantities. ASNP have been present for a long time in several fast-moving consumer products, several of which imply exposure of the gastrointestinal tract, such as toothpastes, food additives, drug excipients, and carriers. Consolidated use and experimental evidence have consistently pointed to the very low acute toxicity and limited absorption of ASNP. However, slow absorption implies prolonged exposure of the intestinal epithelium to ASNP, with documented effects on intestinal permeability and immune gut homeostasis. These effects could explain the hepatic toxicity observed after oral administration of ASNP in animals. More recently, the role of microbiota in these and other ASNP effects has attracted increasing interest in parallel with the recognition of the role of microbiota in a variety of conditions. Although evidence for nanomaterial effects on microbiota is particularly abundant for materials endowed with bactericidal activities, a growing body of recent experimental data indicates that ASNPs also modify microbiota. The implications of these effects are recounted in this contribution, along with a discussion of the more important open issues and recommendations for future research.


Asunto(s)
Microbioma Gastrointestinal , Nanopartículas , Animales , Humanos , Dióxido de Silicio/toxicidad , Nanopartículas/toxicidad , Mucosa Intestinal
5.
Am J Physiol Cell Physiol ; 325(2): C550-C562, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37458433

RESUMEN

SLC38A5/SNAT5 is a system N transporter that can mediate net inward or outward transmembrane fluxes of neutral amino acids coupled with Na+ (symport) and H+ (antiport). Its preferential substrates are not only amino acids with side chains containing amide (glutamine and asparagine) or imidazole (histidine) groups, but also serine, glycine, and alanine are transported by the carrier. Expressed in the pancreas, intestinal tract, brain, liver, bone marrow, and placenta, it is regulated at mRNA and protein levels by mTORC1 and WNT/ß-catenin pathways, and it is sensitive to pH, nutritional stress, inflammation, and hypoxia. SNAT5 expression has been found to be altered in pathological conditions such as chronic inflammatory diseases, gestational complications, chronic metabolic acidosis, and malnutrition. Growing experimental evidence shows that SNAT5 is overexpressed in several types of cancer cells. Moreover, recently published results indicate that SNAT5 expression in stromal cells can support the metabolic exchanges occurring in the tumor microenvironment of asparagine-auxotroph tumors. We review the functional role of the SNAT5 transporter in pathophysiology and propose that, due to its peculiar operational and regulatory features, SNAT5 may play important pro-cancer roles when expressed either in neoplastic or in stromal cells of glutamine-auxotroph tumors.NEW & NOTEWORTHY The transporter SLC38A5/SNAT5 provides net influx or efflux of glutamine, asparagine, and serine. These amino acids are of particular metabolic relevance in several conditions. Changes in transporter expression or activity have been described in selected types of human cancers, where SNAT5 can mediate amino acid exchanges between tumor and stromal cells, thus providing a potential therapeutic target. This is the first review that recapitulates the characteristics and roles of the transporter in physiology and pathology.


Asunto(s)
Sistemas de Transporte de Aminoácidos Neutros , Neoplasias , Embarazo , Femenino , Humanos , Glutamina , Sistemas de Transporte de Aminoácidos Neutros/genética , Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Asparagina , Microambiente Tumoral , Sistemas de Transporte de Aminoácidos , Aminoácidos , Serina , Neoplasias/genética
6.
Biomacromolecules ; 24(6): 2892-2907, 2023 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-37228181

RESUMEN

Oral administration of nanoparticles (NPs) is a promising strategy to overcome solubility and stability issues of many active compounds. However, this route faces major obstacles related to the hostile gastrointestinal (GI) environment, which impairs the efficacy of orally administered nanomedicines. Here, we propose nanocomposites as a promising approach to increase the retention time of NPs in the intestinal tract by using bio- and mucoadhesive matrixes able to protect the cargo until it reaches the targeted area. A microfluidic-based approach has been applied for the production of tailored nanoemulsions (NEs) of about 110 nm, used for the encapsulation of small hydrophobic drugs such as the anti-inflammatory JAK-inhibitor tofacitinib. These NEs proved to be efficiently internalized into a mucus-secreting human intestinal monolayer of Caco-2/HT29-MTX cells and to deliver tofacitinib to subepithelial human THP-1 macrophage-like cells, reducing their inflammatory response. NEs were then successfully encapsulated into alginate hydrogel microbeads of around 300 µm, which were characterized by rheological experiments and dried to create a long-term stable system for pharmaceutical applications. Finally, ex vivo experiments on excised segments of rats' intestine proved the bioadhesive ability of NEs embedded in alginate hydrogels compared to free NEs, showing the advantage that this hybrid system can offer for the treatment of intestinal pathologies.


Asunto(s)
Alginatos , Nanopartículas , Ratas , Humanos , Animales , Alginatos/química , Células CACO-2 , Intestinos , Antiinflamatorios , Administración Oral , Hidrogeles , Nanopartículas/química , Sistemas de Liberación de Medicamentos
7.
Environ Microbiol ; 24(12): 5825-5839, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36123315

RESUMEN

The genomic era has resulted in the generation of a massive amount of genetic data concerning the genomic diversity of bacterial taxa. As a result, the microbiological community is increasingly looking for ways to define reference bacterial strains to perform experiments that are representative of the entire bacterial species. Despite this, there is currently no established approach allowing a reliable identification of reference strains based on a comprehensive genomic, ecological, and functional context. In the current study, we developed a comprehensive multi-omics approach that will allow the identification of the optimal reference strains using the Bifidobacterium genus as test case. Strain tracking analysis based on 1664 shotgun metagenomics datasets of healthy infant faecal samples were employed to identify bifidobacterial strains suitable for in silico and in vitro analyses. Subsequently, an ad hoc bioinformatic tool was developed to screen local strain collections for the most suitable species-representative strain alternative. The here presented approach was validated using in vitro trials followed by metagenomics and metatranscriptomics analyses. Altogether, these results demonstrated the validity of the proposed model for reference strain selection, thus allowing improved in silico and in vitro investigations both in terms of cross-laboratory reproducibility and relevance of research findings.


Asunto(s)
Bifidobacterium , Multiómica , Humanos , Lactante , Bifidobacterium/genética , Reproducibilidad de los Resultados , Heces/microbiología , Metagenómica , Bacterias
8.
Int J Mol Sci ; 21(5)2020 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-32164327

RESUMEN

In cultured human fibroblasts, SNAT transporters (System A) account for the accumulation of non-essential neutral amino acids, are adaptively up-regulated upon amino acid deprivation and play a major role in cell volume recovery upon hypertonic stress. No information is instead available on the expression and activity of SNAT transporters in human bone marrow mesenchymal stromal cells (MSC), although they are increasingly investigated for their staminal and immunomodulatory properties and used for several therapeutic applications. The uptake of glutamine and proline, two substrates of SNAT1 and SNAT2 transporters, was measured in primary human MSC and an MSC line. The amino acid analogue MeAIB, a specific substrate of these carriers, has been used to selectively inhibit SNAT-dependent transport of glutamine and, through its sodium-dependent transport, as an indicator of SNAT1/2 activity. SNAT1/2 expression and localization were assessed with RT-PCR and confocal microscopy, respectively. Cell volume was assessed from urea distribution space. In all these experiments, primary human fibroblasts were used as the positive control for SNAT expression and activity. Compared with fibroblasts, MSC have a lower SNAT1 expression and hardly detectable membrane localization of both SNAT1 and SNAT2. Moreover, they exhibit no sodium-dependent MeAIB uptake or MeAIB-inhibitable glutamine transport, and exhibit a lower ability to accumulate glutamine and proline than fibroblasts. MSC exhibited an only marginal increase in MeAIB transport upon amino acid starvation and did not recover cell volume after hypertonic stress. In conclusion, the activity of SNAT transporters is low in human MSC. MSC adaptation to amino acid shortage is expected to rely on intracellular synthesis, given the absence of an effective up-regulation of the SNAT transporters.


Asunto(s)
Sistema de Transporte de Aminoácidos A/metabolismo , Aminoácidos Neutros/metabolismo , Células Madre Mesenquimatosas/citología , Sistema de Transporte de Aminoácidos A/genética , Técnicas de Cultivo de Célula/métodos , Membrana Celular/metabolismo , Células Cultivadas , Medios de Cultivo/química , Fibroblastos/citología , Fibroblastos/metabolismo , Glutamina/metabolismo , Humanos , Células Madre Mesenquimatosas/metabolismo , Prolina/metabolismo , Transporte de Proteínas , beta-Alanina/análogos & derivados , beta-Alanina/metabolismo
9.
Blood ; 128(5): 667-79, 2016 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-27268090

RESUMEN

The importance of glutamine (Gln) metabolism in multiple myeloma (MM) cells and its potential role as a therapeutic target are still unknown, although it has been reported that human myeloma cell lines (HMCLs) are highly sensitive to Gln depletion. In this study, we found that both HMCLs and primary bone marrow (BM) CD138(+) cells produced large amounts of ammonium in the presence of Gln. MM patients have lower BM plasma Gln with higher ammonium and glutamate than patients with indolent monoclonal gammopathies. Interestingly, HMCLs expressed glutaminase (GLS1) and were sensitive to its inhibition, whereas they exhibited negligible expression of glutamine synthetase (GS). High GLS1 and low GS expression were also observed in primary CD138(+) cells. Gln-free incubation or treatment with the glutaminolytic enzyme l-asparaginase depleted the cell contents of Gln, glutamate, and the anaplerotic substrate 2-oxoglutarate, inhibiting MM cell growth. Consistent with the dependence of MM cells on extracellular Gln, a gene expression profile analysis, on both proprietary and published datasets, showed an increased expression of the Gln transporters SNAT1, ASCT2, and LAT1 by CD138(+) cells across the progression of monoclonal gammopathies. Among these transporters, only ASCT2 inhibition in HMCLs caused a marked decrease in Gln uptake and a significant fall in cell growth. Consistently, stable ASCT2 downregulation by a lentiviral approach inhibited HMCL growth in vitro and in a murine model. In conclusion, MM cells strictly depend on extracellular Gln and show features of Gln addiction. Therefore, the inhibition of Gln uptake is a new attractive therapeutic strategy for MM.


Asunto(s)
Glutamina/metabolismo , Terapia Molecular Dirigida , Mieloma Múltiple/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Sistema de Transporte de Aminoácidos ASC/metabolismo , Compuestos de Amonio/metabolismo , Animales , Asparaginasa/metabolismo , Transporte Biológico , Línea Celular Tumoral , Proliferación Celular , Femenino , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Silenciador del Gen , Glutamato-Amoníaco Ligasa/metabolismo , Glutaminasa/metabolismo , Humanos , Masculino , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Ratones Endogámicos NOD , Ratones SCID , Persona de Mediana Edad , Antígenos de Histocompatibilidad Menor/metabolismo , Gammopatía Monoclonal de Relevancia Indeterminada/patología , Mieloma Múltiple/enzimología , Mieloma Múltiple/genética , Mieloma Múltiple/patología , Sindecano-1/metabolismo
10.
Int J Mol Sci ; 19(4)2018 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-29642388

RESUMEN

In cells derived from several types of cancer, a transcriptional program drives high consumption of glutamine (Gln), which is used for anaplerosis, leading to a metabolic addiction for the amino acid. Low or absent expression of Glutamine Synthetase (GS), the only enzyme that catalyzes de novo Gln synthesis, has been considered a marker of Gln-addicted cancers. In this study, two human cell lines derived from brain tumors with oligodendroglioma features, HOG and Hs683, have been shown to be GS-negative. Viability of both lines depends from extracellular Gln with EC50 of 0.175 ± 0.056 mM (Hs683) and 0.086 ± 0.043 mM (HOG), thus suggesting that small amounts of extracellular Gln are sufficient for OD cell growth. Gln starvation does not significantly affect the cell content of anaplerotic substrates, which, consistently, are not able to rescue cell growth, but causes hindrance of the Wnt/ß-catenin pathway and protein synthesis attenuation, which is mitigated by transient GS expression. Gln transport inhibitors cause partial depletion of intracellular Gln and cell growth inhibition, but do not lower cell viability. Therefore, GS-negative human oligodendroglioma cells are Gln-auxotrophic but do not use the amino acid for anaplerosis and, hence, are not Gln addicted, exhibiting only limited Gln requirements for survival and growth.


Asunto(s)
Glutamato-Amoníaco Ligasa/deficiencia , Glutamina/metabolismo , Oligodendroglioma/metabolismo , Línea Celular Tumoral , Proliferación Celular , Supervivencia Celular , Glutamato-Amoníaco Ligasa/genética , Glutamato-Amoníaco Ligasa/metabolismo , Humanos , Proteínas Wnt/metabolismo , beta Catenina/metabolismo
11.
Amino Acids ; 49(8): 1365-1372, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28516268

RESUMEN

L-γ-Glutamyl-p-nitroanilide (GPNA) is widely used to inhibit the glutamine transporter ASCT2, although it is known that it also inhibits other sodium-dependent amino acid transporters. In a panel of human cancer cell lines, which express the system L transporters LAT1 and LAT2, GPNA inhibits the sodium-independent influx of leucine and glutamine. The kinetics of the effect suggests that GPNA is a low affinity, competitive inhibitor of system L transporters. In Hs683 human oligodendroglioma cells, the incubation in the presence of GPNA, but not ASCT2 silencing, lowers the cell content of leucine. Under the same conditions the activity of mTORC1 is inhibited. Decreased cell content of branched chain amino acids and mTORC1 inhibition are observed in most of the other cell lines upon incubation with GPNA. It is concluded that GPNA hinders the uptake of essential amino acids through system L transporters and lowers their cell content.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/antagonistas & inhibidores , Aminoácidos Neutros/metabolismo , Dipéptidos/farmacología , Transportador de Aminoácidos Neutros Grandes 1/química , Neoplasias/patología , Proliferación Celular/efectos de los fármacos , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Células Tumorales Cultivadas
12.
J Biol Chem ; 290(29): 17822-17837, 2015 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-26041779

RESUMEN

Cells respond to shrinkage induced by increased extracellular osmolarity via programmed changes in gene transcription and mRNA translation. The immediate response to this stress includes the induction of expression of the neutral amino acid transporter SNAT2. Increased SNAT2-mediated uptake of neutral amino acids is an essential adaptive mechanism for restoring cell volume. In contrast, stress-induced phosphorylation of the α subunit of the translation initiation factor eIF2 (eIF2α) can promote apoptosis. Here we show that the response to mild hyperosmotic stress involves regulation of the phosphorylation of eIF2α by increased levels of GADD34, a regulatory subunit of protein phosphatase 1 (PP1). The induction of GADD34 was dependent on transcriptional control by the c-Jun-binding cAMP response element in the GADD34 gene promoter and posttranscriptional stabilization of its mRNA. This mechanism differs from the regulation of GADD34 expression by other stresses that involve activating transcription factor 4 (ATF4). ATF4 was not translated during hyperosmotic stress despite an increase in eIF2α phosphorylation. The SNAT2-mediated increase in amino acid uptake was enhanced by increased GADD34 levels in a manner involving decreased eIF2α phosphorylation. It is proposed that the induction of the SNAT2/GADD34 axis enhances cell survival by promoting the immediate adaptive response to stress.


Asunto(s)
Sistema de Transporte de Aminoácidos A/metabolismo , Presión Osmótica , Proteína Fosfatasa 1/metabolismo , Animales , Línea Celular , Supervivencia Celular , Factor 2 Eucariótico de Iniciación/metabolismo , Regulación de la Expresión Génica , Células HEK293 , Células HeLa , Humanos , Ratones , Fosforilación , Regiones Promotoras Genéticas , Proteína Fosfatasa 1/genética
13.
Cell Mol Life Sci ; 71(11): 2001-15, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24162932

RESUMEN

Excitatory amino acid transporters (EAATs) are high-affinity Na(+)-dependent carriers of major importance in maintaining glutamate homeostasis in the central nervous system. EAAT3, the human counterpart of the rodent excitatory amino acid carrier 1 (EAAC1), is encoded by the SLC1A1 gene. EAAT3/EAAC1 is ubiquitously expressed in the brain, mostly in neurons but also in other cell types, such as oligodendrocyte precursors. While most of the glutamate released in the synapses is taken up by the "glial-type" EAATs, EAAT2 (GLT-1 in rodents) and EAAT1 (GLAST), the functional role of EAAT3/EAAC1 is related to the subtle regulation of glutamatergic transmission. Moreover, because it can also transport cysteine, EAAT3/EAAC1 is believed to be important for the synthesis of intracellular glutathione and subsequent protection from oxidative stress. In contrast to other EAATs, EAAT3/EAAC1 is mostly intracellular, and several mechanisms have been described for the rapid regulation of the membrane trafficking of the transporter. Moreover, the carrier interacts with several proteins, and this interaction modulates transport activity. Much less is known about the slow regulatory mechanisms acting on the expression of the transporter, although several recent reports have identified changes in EAAT3/EAAC1 protein level and activity related to modulation of its expression at the gene level. Moreover, EAAT3/EAAC1 expression is altered in pathological conditions, such as hypoxia/ischemia, multiple sclerosis, schizophrenia, and epilepsy. This review summarizes these results and provides an overall picture of changes in EAAT3/EAAC1 expression in health and disease.


Asunto(s)
Epilepsia/genética , Transportador 3 de Aminoácidos Excitadores/genética , Ácido Glutámico/metabolismo , Hipoxia/genética , Esclerosis Múltiple/genética , Esquizofrenia/genética , Animales , Transporte Biológico , Sistema Nervioso Central/metabolismo , Sistema Nervioso Central/patología , Epilepsia/metabolismo , Epilepsia/patología , Transportador 3 de Aminoácidos Excitadores/metabolismo , Regulación de la Expresión Génica , Homeostasis , Humanos , Hipoxia/metabolismo , Hipoxia/patología , Ratones , Esclerosis Múltiple/metabolismo , Esclerosis Múltiple/patología , Estrés Oxidativo , Esquizofrenia/metabolismo , Esquizofrenia/patología , Transducción de Señal
14.
J Biol Chem ; 288(24): 17202-13, 2013 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-23645676

RESUMEN

Endoplasmic reticulum (ER) stress-induced responses are associated with the loss of insulin-producing ß-cells in type 2 diabetes mellitus. ß-Cell survival during ER stress is believed to depend on decreased protein synthesis rates that are mediated via phosphorylation of the translation initiation factor eIF2α. It is reported here that chronic ER stress correlated with increased islet protein synthesis and apoptosis in ß-cells in vivo. Paradoxically, chronic ER stress in ß-cells induced an anabolic transcription program to overcome translational repression by eIF2α phosphorylation. This program included expression of amino acid transporter and aminoacyl-tRNA synthetase genes downstream of the stress-induced ATF4-mediated transcription program. The anabolic response was associated with increased amino acid flux and charging of tRNAs for branched chain and aromatic amino acids (e.g. leucine and tryptophan), the levels of which are early serum indicators of diabetes. We conclude that regulation of amino acid transport in ß-cells during ER stress involves responses leading to increased protein synthesis, which can be protective during acute stress but can lead to apoptosis during chronic stress. These studies suggest that the increased expression of amino acid transporters in islets can serve as early diagnostic biomarkers for the development of diabetes.


Asunto(s)
Aminoácidos/metabolismo , Apoptosis , Diabetes Mellitus Tipo 2/metabolismo , Estrés del Retículo Endoplásmico , Células Secretoras de Insulina/fisiología , Factor de Transcripción Activador 4/metabolismo , Sistemas de Transporte de Aminoácidos/genética , Sistemas de Transporte de Aminoácidos/metabolismo , Aminoacil-ARNt Sintetasas/genética , Aminoacil-ARNt Sintetasas/metabolismo , Animales , Supervivencia Celular , Diabetes Mellitus Tipo 2/patología , Factor 2 Eucariótico de Iniciación/metabolismo , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Fosforilación , Biosíntesis de Proteínas , Procesamiento Proteico-Postraduccional , ARN de Transferencia/metabolismo , Activación Transcripcional
15.
Chem Res Toxicol ; 27(7): 1142-54, 2014 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-24933079

RESUMEN

High-aspect-ratio nanomaterials (HARN) (typically, single-walled carbon nanotubes (SWCNT) or multiwalled carbon nanotubes (MWCNT)) impair airway barrier function and are toxic to macrophages. Here, we assess the biological effects of nanotubes of imogolite (INT), a hydrated alumino-silicate [(OH)3Al2O3SiOH] occurring as single-walled NT, on murine macrophages and human airway epithelial cells. Cell viability was assessed with resazurin. RT-PCR was used to study the expression of Nos2 and Arg1, markers of classical or alternative macrophage activation, respectively, and nitrite concentration in the medium was determined to assess NO production. Epithelial barrier integrity was evaluated from the trans-epithelial electrical resistance (TEER). Potential genotoxicity of INT was assessed with comet and cytokinesis-block micronucleus cytome assays. Compared to MWCNT and SWCNT, INT caused much smaller effects on RAW264.7 and MH-S macrophage viability. The incubation of macrophages with INT at doses as high as 120 µg/cm(2) for 72 h did not alter either Nos2 or Arg1 expression nor did it increase NO production, whereas IL6 was induced in RAW264.7 cells but not in MH-S cells. INT did not show any genotoxic effect in RAW264.7 and A549 cells except for a decrease in DNA integrity observed in epithelial A549 cells after treatment with the highest dose (80 µg/cm(2)). No significant change in permeability was recorded in Calu-3 epithelial cell monolayers exposed to INT, whereas comparable doses of both SWCNT and MWCNT lowered TEER. Thus, in spite of their fibrous nature, INT appear not to be markedly toxic for in vitro models of lung-blood barrier cells.


Asunto(s)
Silicatos de Aluminio/toxicidad , Nanotubos/toxicidad , Silicatos de Aluminio/química , Animales , Línea Celular , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Ensayo Cometa , Formiatos/química , Radicales Libres/química , Humanos , Peróxido de Hidrógeno/química , Ratones , Pruebas de Micronúcleos , Nanotubos/química , Nanotubos de Carbono/toxicidad , Óxido Nítrico/metabolismo
16.
Mol Pharm ; 11(4): 1151-63, 2014 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-24592930

RESUMEN

Here, we report the antiproliferative/cytotoxic properties of 8-hydroxyquinoline (8-HQ) derivatives on HeLa cells in the presence of transition metal ions (Cu(2+), Fe(3+), Co(2+), Ni(2+)). Two series of ligands were tested, the arylvinylquinolinic L1-L8 and the arylethylenequinolinic L9-L16, which can all interact with metal ions by virtue of the N,O donor set of 8-HQ; however, only L9-L16 are flexible enough to bind the metal in a multidentate fashion, thus exploiting the additional donor functions. L1-L16 were tested for their cytotoxicity on HeLa cancer cells, both in the absence and in the presence of copper. Among them, the symmetric L14 exhibits the highest differential activity between the ligand alone (IC50 = 23.7 µM) and its copper complex (IC50 = 1.8 µM). This latter, besides causing a significant reduction of cell viability, is associated with a considerable accumulation of the metal inside the cells. Metal accumulation is also observed when the cells are incubated with L14 complexed with other late transition metal ions (Fe(3+), Co(2+), Ni(2+)), although the biological response of HeLa cells is different. In fact, while Ni/L14 and Co/L14 exert a cytostatic effect, both Cu/L14 and Fe/L14 trigger a caspase-independent paraptotic process, which results from the induction of a severe oxidative stress and the unfolded protein response.


Asunto(s)
Apoptosis/efectos de los fármacos , Cobre/farmacología , Hidroxiquinolinas/farmacología , Hierro/farmacología , Estrés Oxidativo/efectos de los fármacos , Caspasas/fisiología , Supervivencia Celular/efectos de los fármacos , Células HeLa , Humanos , Hidroxiquinolinas/síntesis química , Estructura Molecular , Respuesta de Proteína Desplegada
17.
Microb Biotechnol ; 17(2): e14406, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38271233

RESUMEN

Bifidobacteria are commensal microorganisms that typically inhabit the mammalian gut, including that of humans. As they may be vertically transmitted, they commonly colonize the human intestine from the very first day following birth and may persist until adulthood and old age, although generally at a reduced relative abundance and prevalence compared to infancy. The ability of bifidobacteria to persist in the human intestinal environment has been attributed to genes involved in adhesion to epithelial cells and the encoding of complex carbohydrate-degrading enzymes. Recently, a putative mucin-degrading glycosyl hydrolase belonging to the GH136 family and encoded by the perB gene has been implicated in gut persistence of certain bifidobacterial strains. In the current study, to better characterize the function of this gene, a comparative genomic analysis was performed, revealing the presence of perB homologues in just eight bifidobacterial species known to colonize the human gut, including Bifidobacterium bifidum and Bifidobacterium longum subsp. longum strains, or in non-human primates. Mucin-mediated growth and adhesion to human intestinal cells, in addition to a rodent model colonization assay, were performed using B. bifidum PRL2010 as a perB prototype and its isogenic perB-insertion mutant. These results demonstrate that perB inactivation reduces the ability of B. bifidum PRL2010 to grow on and adhere to mucin, as well as to persist in the rodent gut niche. These results corroborate the notion that the perB gene is one of the genetic determinants involved in the persistence of B. bifidum PRL2010 in the human gut.


Asunto(s)
Bifidobacterium bifidum , Animales , Bifidobacterium bifidum/genética , Bifidobacterium/genética , Células Epiteliales/microbiología , Mucinas , Mamíferos
18.
Front Microbiol ; 15: 1349391, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38426063

RESUMEN

Members of the genus Bifidobacterium are among the first microorganisms colonizing the human gut. Among these species, strains of Bifidobacterium breve are known to be commonly transmitted from mother to her newborn, while this species has also been linked with activities supporting human wellbeing. In the current study, an in silico approach, guided by ecology- and phylogenome-based analyses, was employed to identify a representative strain of B. breve to be exploited as a novel health-promoting candidate. The selected strain, i.e., B. breve PRL2012, was found to well represent the genetic content and functional genomic features of the B. breve taxon. We evaluated the ability of PRL2012 to survive in the gastrointestinal tract and to interact with other human gut commensal microbes. When co-cultivated with various human gut commensals, B. breve PRL2012 revealed an enhancement of its metabolic activity coupled with the activation of cellular defense mechanisms to apparently improve its survivability in a simulated ecosystem resembling the human microbiome.

19.
Food Funct ; 15(9): 5118-5131, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38682277

RESUMEN

This study investigated the impact of in vivo available colon-mango (poly)phenols on stress-induced impairment of intestinal barrier function. Caco-2/HT29-MTX cells were incubated with six extracts of ileal fluid collected pre- and 4-8 h post-mango consumption before being subjected to inflammatory stress. (Poly)phenols in ileal fluids were analysed by UHPLC-HR-MS. Epithelial barrier function was monitored by measurement of trans-epithelial electrical resistance (TEER) and the production of selected inflammatory markers (interleukin-8 (IL-8) and nitric oxide (NO)) and the major mucin of the mucosal layer (MUC2). Post-mango intake ileal fluids contained principally benzoic acids, hydroxybenzenes and galloyl derivatives. There was a high interindividual variability in the levels of these compounds, which was reflected by the degree of variability in the protective effects of individual ileal extracts on inflammatory changes in the treated cell cultures. The 24 h treatment with non-cytotoxic doses of extracts of 4-8 h post-mango intake ileal fluid significantly reduced the TEER decrease in monolayers treated with the inflammatory cytomix. This effect was not associated with changes in IL-8 expression and secretion or claudine-7 expression. The mango derived-ileal fluid extract (IFE) also mitigated cytomix-dependent nitrite secretion, as a proxy of NO production, and the MUC2 reduction observed upon the inflammatory challenge. These insights shed light on the potential protective effect of mango (poly)phenols on the intestinal barrier exposed to inflammatory conditions.


Asunto(s)
Interleucina-8 , Mucosa Intestinal , Mangifera , Mucina 2 , Humanos , Mangifera/química , Células CACO-2 , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/metabolismo , Interleucina-8/metabolismo , Mucina 2/metabolismo , Células HT29 , Polifenoles/farmacología , Colon/efectos de los fármacos , Colon/metabolismo , Óxido Nítrico/metabolismo , Extractos Vegetales/farmacología , Extractos Vegetales/química , Inflamación/tratamiento farmacológico , Funcion de la Barrera Intestinal
20.
mSystems ; 9(4): e0129423, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38441032

RESUMEN

The human gut microbiota is a dynamic community of microorganisms that undergo variable changes over the entire life span. To thoroughly investigate the possible fluctuations of the microbiota throughout human life, we performed a pooled analysis of healthy fecal samples across different age groups covering the entire human life span. Our study integrated data from 79 publicly available studies and new stool samples from an Italian cohort, i.e., the Parma Microbiota project, resulting in 6,653 samples processed through the shotgun metagenomic approach. This approach has allowed species-level taxonomic reconstruction of the gut microbiota and investigation of its metabolic potential across the human life span. From a taxonomic point of view, our findings confirmed and detailed at species-level accuracy that the microbial richness of the gut microbiota gradually increases in the first stage of life, becoming relatively stable during adolescence. Moreover, the analysis identified the potential core microbiota representative of distinct age groups, revealing age-related bacterial patterns and the continuous rearrangement of the microbiota in terms of relative abundances across the life span rather than the acquisition and loss of taxa. Furthermore, the shotgun approach provided insights into the functional contribution of the human gut microbiome. The metagenomic analysis revealed functional age-related differences, particularly in carbohydrate and fiber metabolism, suggesting a co-evolution of the microbiome assembly with diet. Additionally, we identified correlations between vitamin synthesis, such as thiamine and niacin, and early life, suggesting a potential role of the microbiome in human physiology, in particular in the functions of the host's nervous and immune systems. IMPORTANCE: In this study, we provided comprehensive insights into the dynamic nature of the human gut microbiota across the human life span. In detail, we analyzed a large data set based on a shotgun metagenomic approach, combining public data sets and new samples from the Parma Microbiota project and obtaining a detailed overview of the possible relationship between gut microbiota development and aging. Our findings confirmed the main stages in microbial richness development and revealed specific core microbiota associated with different age stages. Moreover, the shotgun metagenomic approach allowed the disentangling of the functional changes in the microbiome across the human life span, particularly in diet-related metabolism, which is probably correlated to bacterial co-evolution with dietary habits. Notably, our study also uncovered positive correlations with vitamin synthesis in early life, suggesting a possible impact of the microbiota on human physiology.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Humanos , Microbioma Gastrointestinal/genética , Metagenoma/genética , Bacterias/genética , Vitaminas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA