Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Biochem Biophys Res Commun ; 463(4): 1317-22, 2015 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-26106822

RESUMEN

Expansion of a CAG triplet repeat within the first exon of the HUNTINGTIN gene encoding for a polyglutamine tract is the cause of a progressive neurodegenerative disorder known as Huntington's disease. N-terminal fragments of mutant huntingtin have a strong propensity to form oligomers and aggregates that have been linked to the Huntington's disease pathology by different mechanisms, including gain of toxic functions. The biological and biophysical properties of the polyglutamine expansion within these huntingtin fragments are influenced by neighboring domains, in particular by the first 17 amino acids of huntingtin (N17), which precede the polyglutamine expansion. It has been suggested that N17 phosphorylation modulate mutant huntingtin aggregation and toxicity, but the study of its functional and pathological relevance requires the capacity to detect this modification in biological samples in a simple, robust way, that ideally provides information on the abundance of a phosphorylated species relative to the total pool of the protein of interest. Using a modified SDS-PAGE protocol (Phos-Tag) followed by Western blotting with specific anti-HUNTINGTIN antibodies, we efficiently resolved huntingtin fragments expressed in cellular contexts based on the presence of phosphorylated residues, we defined threonine 3 as the major site of huntingtin N17 phosphorylation and, finally, we identified IKK-beta as a kinase capable of phosphorylating threonine 3 in N-terminal hungtingtin fragments.


Asunto(s)
Exones , Proteínas I-kappa B/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Treonina/metabolismo , Electroforesis en Gel de Poliacrilamida , Células HEK293 , Humanos , Proteína Huntingtina , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/genética , Fosforilación
2.
J Cell Biol ; 211(1): 77-90, 2015 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-26438828

RESUMEN

Spinal muscular atrophy (SMA) is a neurodegenerative disease caused by loss of motor neurons in patients with null mutations in the SMN1 gene. The almost identical SMN2 gene is unable to compensate for this deficiency because of the skipping of exon 7 during pre-messenger RNA (mRNA) processing. Although several splicing factors can modulate SMN2 splicing in vitro, the physiological regulators of this disease-causing event are unknown. We found that knockout of the splicing factor SAM68 partially rescued body weight and viability of SMAΔ7 mice. Ablation of SAM68 function promoted SMN2 splicing and expression in SMAΔ7 mice, correlating with amelioration of SMA-related defects in motor neurons and skeletal muscles. Mechanistically, SAM68 binds to SMN2 pre-mRNA, favoring recruitment of the splicing repressor hnRNP A1 and interfering with that of U2AF65 at the 3' splice site of exon 7. These findings identify SAM68 as the first physiological regulator of SMN2 splicing in an SMA mouse model.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/fisiología , Atrofia Muscular Espinal/metabolismo , Proteínas de Unión al ARN/fisiología , Proteína 2 para la Supervivencia de la Neurona Motora/metabolismo , Animales , Secuencia de Bases , Femenino , Células HEK293 , Ribonucleoproteína Nuclear Heterogénea A1 , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B/metabolismo , Humanos , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Datos de Secuencia Molecular , Neuronas Motoras/metabolismo , Atrofia Muscular Espinal/genética , Empalme del ARN , Médula Espinal/patología
3.
PLoS One ; 8(1): e54271, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23372698

RESUMEN

Neural stem cells (NSCs) are self-renewing cells that can differentiate into multiple neural lineages and repopulate regions of the brain after injury. We have investigated the role of endocannabinoids (eCBs), endogenous cues that modulate neuronal functions including neurogenesis, and their receptors CB(1) and CB(2) in mouse NSCs. Real-time PCR and Western blot analyses indicated that CB(1) is present at higher levels than CB(2) in NSCs. The eCB anandamide (AEA) or the CB(1)-specific agonist ACEA enhanced NSC differentiation into neurons, but not astrocytes and oligodendrocytes, whereas the CB(2)-specific agonist JWH133 was ineffective. Conversely, the effect of AEA was inhibited by CB(1), but not CB(2), antagonist, corroborating the specificity of the response. CB(1) activation also enhanced maturation of neurons, as indicated by morphometric analysis of neurites. CB(1) stimulation caused long-term inhibition of the ERK1/2 pathway. Consistently, pharmacological inhibition of the ERK1/2 pathway recapitulated the effects exerted by CB(1) activation on neuronal differentiation and maturation. Lastly, gene array profiling showed that CB(1) activation augmented the expression of genes involved in neuronal differentiation while decreasing that of stemness genes. These results highlight the role of CB(1) in the regulation of NSC fate and suggest that its activation may represent a pro-neuronal differentiation signal.


Asunto(s)
Agonistas de Receptores de Cannabinoides/farmacología , Diferenciación Celular/efectos de los fármacos , Células-Madre Neurales/citología , Neuronas/citología , Receptor Cannabinoide CB1/genética , Animales , Ácidos Araquidónicos/farmacología , Cannabinoides/farmacología , Embrión de Mamíferos , Endocannabinoides/farmacología , Expresión Génica/efectos de los fármacos , Perfilación de la Expresión Génica , Ratones , Ratones Endogámicos C57BL , Análisis por Micromatrices , Proteína Quinasa 1 Activada por Mitógenos/antagonistas & inhibidores , Proteína Quinasa 1 Activada por Mitógenos/genética , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/antagonistas & inhibidores , Proteína Quinasa 3 Activada por Mitógenos/genética , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Células-Madre Neurales/efectos de los fármacos , Células-Madre Neurales/metabolismo , Neuronas/metabolismo , Alcamidas Poliinsaturadas/farmacología , Cultivo Primario de Células , Inhibidores de Proteínas Quinasas/farmacología , Receptor Cannabinoide CB1/agonistas , Receptor Cannabinoide CB1/antagonistas & inhibidores , Receptor Cannabinoide CB1/metabolismo , Receptor Cannabinoide CB2/agonistas , Receptor Cannabinoide CB2/antagonistas & inhibidores , Receptor Cannabinoide CB2/genética , Receptor Cannabinoide CB2/metabolismo , Transducción de Señal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA