Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 176(3): 505-519.e22, 2019 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-30612738

RESUMEN

Genomic instability can be a hallmark of both human genetic disease and cancer. We identify a deleterious UBQLN4 mutation in families with an autosomal recessive syndrome reminiscent of genome instability disorders. UBQLN4 deficiency leads to increased sensitivity to genotoxic stress and delayed DNA double-strand break (DSB) repair. The proteasomal shuttle factor UBQLN4 is phosphorylated by ATM and interacts with ubiquitylated MRE11 to mediate early steps of homologous recombination-mediated DSB repair (HRR). Loss of UBQLN4 leads to chromatin retention of MRE11, promoting non-physiological HRR activity in vitro and in vivo. Conversely, UBQLN4 overexpression represses HRR and favors non-homologous end joining. Moreover, we find UBQLN4 overexpressed in aggressive tumors. In line with an HRR defect in these tumors, UBQLN4 overexpression is associated with PARP1 inhibitor sensitivity. UBQLN4 therefore curtails HRR activity through removal of MRE11 from damaged chromatin and thus offers a therapeutic window for PARP1 inhibitor treatment in UBQLN4-overexpressing tumors.


Asunto(s)
Proteínas Portadoras/genética , Proteínas Nucleares/genética , Proteínas Portadoras/metabolismo , Cromatina/metabolismo , ADN , Roturas del ADN de Doble Cadena , Daño del ADN/genética , Reparación del ADN por Unión de Extremidades , Proteínas de Unión al ADN/metabolismo , Femenino , Inestabilidad Genómica , Mutación de Línea Germinal , Recombinación Homóloga , Humanos , Proteína Homóloga de MRE11/genética , Proteína Homóloga de MRE11/metabolismo , Masculino , Neoplasias/genética , Neoplasias/metabolismo , Proteínas Nucleares/metabolismo , Cultivo Primario de Células , Reparación del ADN por Recombinación
2.
Clin Chem ; 70(1): 261-272, 2024 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-37791385

RESUMEN

BACKGROUND: The incidence of patients diagnosed with renal cell carcinoma (RCC) is increasing. There are no approved biofluid biomarkers for routine diagnosis of RCC patients. This retrospective study aims to identify cell-free microRNA (cfmiR) signatures in urine samples that can be utilized as biomarkers for early diagnosis of sporadic RCC patients. METHODS: Tissue, plasma, and urine samples (n = 221) from 56 sporadic RCC patients and respective normal healthy donors were profiled for 2083 microRNAs (miRs) using the next-generation sequencing-based HTG EdgeSeq miR Whole Transcriptome Assay. DESeq2 (FC |1.2|, false discovery rate <0.05) was performed to identify differentially expressed miRs. Data from RCC tissue samples of The Cancer Genome Atlas database were used for miR validation. RESULTS: We found a 10-miR signature that distinguished RCC tissues from remote normal kidney tissue or benign kidney lesion samples. Additionally, we identified subtype-specific miRs (miR-122-5p, miR-210-3p, and miR-21-3p) and miRs specific for all RCC subtypes (miR-106b-3p, miR-629-5p, and miR-885-5p). We observed that miR-155-5p was associated with tumor size. Using The Cancer Genome Atlas data sets, we validated the miRs found in RCC tissue samples. In plasma or urine analysis, we found cfmiRs that were consistently and significantly upregulated in RCC tissue samples. A 15-cfmiR signature was proposed in urine samples of RCC patients, of which miR-1275 was consistently upregulated in tissue, plasma, and urine samples. CONCLUSIONS: This integrative study found diagnostic miRs/cfmiRs for RCC patients, which were validated using The Cancer Genome Atlas data sets. Distinctive cfmiR signatures found in urine may have clinical utility for the diagnosis of RCC.


Asunto(s)
Carcinoma de Células Renales , MicroARN Circulante , Neoplasias Renales , MicroARNs , Humanos , Carcinoma de Células Renales/diagnóstico , Carcinoma de Células Renales/genética , MicroARNs/genética , MicroARNs/análisis , Neoplasias Renales/diagnóstico , Neoplasias Renales/genética , Estudios Retrospectivos , Biomarcadores de Tumor/genética
3.
Lab Invest ; 102(7): 711-721, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35013528

RESUMEN

Glioblastoma (GBM) is still one of the most commonly diagnosed advanced stage primary brain tumors. Current treatments for patients with primary GBM (pGBM) are often not effective and a significant proportion of the patients with pGBM recur. The effective treatment options for recurrent GBM (rGBM) are limited and survival outcomes are poor. This retrospective multicenter pilot study aims to determine potential cell-free microRNAs (cfmiRs) that identify patients with pGBM and rGBM tumors. 2,083 miRs were assessed using the HTG miRNA whole transcriptome assay (WTA). CfmiRs detection was compared in pre-operative plasma samples from patients with pGBM (n = 32) and rGBM (n = 13) to control plasma samples from normal healthy donors (n = 73). 265 cfmiRs were found differentially expressed in plasma samples from pGBM patients compared to normal healthy donors (FDR < 0.05). Of those 193 miRs were also detected in pGBM tumor tissues (n = 15). Additionally, we found 179 cfmiRs differentially expressed in rGBM, of which 68 cfmiRs were commonly differentially expressed in pGBM. Using Random Forest algorithm, specific cfmiR classifiers were found in the plasma of pGBM, rGBM, and both pGBM and rGBM combined. Two common cfmiR classifiers, miR-3180-3p and miR-5739, were found in all the comparisons. In receiving operating characteristic (ROC) curves analysis for rGBM miR-3180-3p showed a specificity of 87.7% and a sensitivity of 100% (AUC = 98.5%); while miR-5739 had a specificity of 79.5% and sensitivity of 92.3% (AUC = 90.2%). This study demonstrated that plasma samples from pGBM and rGBM patients have specific miR signatures. CfmiR-3180-3p and cfmiR-5739 have potential utility in diagnosing patients with pGBM and rGBM tumors using a minimally invasive blood assay.


Asunto(s)
Neoplasias Encefálicas , MicroARN Circulante , Glioblastoma , MicroARNs , Biomarcadores de Tumor/genética , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/genética , Glioblastoma/diagnóstico , Glioblastoma/genética , Humanos , MicroARNs/genética , Proyectos Piloto , Transcriptoma
4.
J Biol Chem ; 291(44): 23101-23111, 2016 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-27613869

RESUMEN

At the final stage of exocytotis, a fusion pore opens between the plasma and a secretory vesicle membranes; typically, when the pore dilates the vesicle releases its cargo. Sperm contain a large dense-core secretory granule (the acrosome) whose contents are secreted by regulated exocytosis at fertilization. Minutes after the arrival of the triggering signal, the acrosomal and plasma membranes dock at multiple sites and fusion pores open at the contact points. It is believed that immediately afterward, fusion pores dilate spontaneously. Rab3A is an essential component of human sperm exocytotic machinery. Yet, recombinant, persistently active Rab3A halts calcium-triggered secretion when introduced after docking into streptolysin O-permeabilized cells; so does a Rab3A-22A chimera. Here, we applied functional assays, electron and confocal microscopy to show that the secretion blockage is due to the stabilization of open fusion pores. Other novel findings are that sperm SNAREs engage in α-SNAP/NSF-sensitive complexes at a post-fusion stage. Complexes are disentangled by these chaperons to achieve vesiculation and acrosomal contents release. Thus, post-fusion regulation of the pores determines their expansion and the success of the acrosome reaction.


Asunto(s)
Exocitosis , Espermatozoides/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Proteína de Unión al GTP rab3A/metabolismo , Acrosoma/metabolismo , Calcio/metabolismo , Membrana Celular/genética , Membrana Celular/metabolismo , Humanos , Masculino , Proteínas de Unión al GTP rab/genética , Proteína de Unión al GTP rab3A/genética
5.
Biochim Biophys Acta ; 1863(4): 544-61, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26704387

RESUMEN

Exocytosis of the sperm's single secretory granule, or acrosome, is a regulated exocytosis triggered by components of the egg's investments. In addition to external calcium, sperm exocytosis (termed the acrosome reaction) requires cAMP synthesized endogenously and calcium mobilized from the acrosome through IP3-sensitive channels. The relevant cAMP target is Epac. In the first part of this paper, we present a novel tool (the TAT-cAMP sponge) to investigate cAMP-related signaling pathways in response to progesterone as acrosome reaction trigger. The TAT-cAMP sponge consists of the cAMP-binding sites of protein kinase A regulatory subunit RIß fused to the protein transduction domain TAT of the human immunodeficiency virus-1. The sponge permeated into sperm, sequestered endogenous cAMP, and blocked exocytosis. Progesterone increased the population of sperm with Rap1-GTP, Rab3-GTP, and Rab27-GTP in the acrosomal region; pretreatment with the TAT-cAMP sponge prevented the activation of all three GTPases. In the second part of this manuscript, we show that phospholipase Cε (PLCε) is required for the acrosome reaction downstream of Rap1 and upstream of intra-acrosomal calcium mobilization. Last, we present direct evidence that cAMP, Epac, Rap1, and PLCε are necessary for calcium mobilization from sperm's secretory granule. In summary, we describe here a pathway that connects cAMP to calcium mobilization from the acrosome during sperm exocytosis. Never before had direct evidence for each step of the cascade been put together in the same study.


Asunto(s)
Acrosoma/metabolismo , Calcio/metabolismo , AMP Cíclico/metabolismo , Espermatozoides/metabolismo , AMP Cíclico/fisiología , Exocitosis/genética , Exocitosis/fisiología , Factores de Intercambio de Guanina Nucleótido/metabolismo , Factores de Intercambio de Guanina Nucleótido/fisiología , Humanos , Fosfatos de Inositol/metabolismo , Fosfatos de Inositol/fisiología , Masculino , Fosfoinositido Fosfolipasa C/metabolismo , Fosfoinositido Fosfolipasa C/fisiología , Transducción de Señal/genética , Transducción de Señal/fisiología , Transfección , Proteínas de Unión al GTP rap1/metabolismo , Proteínas de Unión al GTP rap1/fisiología
6.
J Biol Chem ; 290(15): 9823-41, 2015 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-25713146

RESUMEN

Regulated secretion is a central issue for the specific function of many cells; for instance, mammalian sperm acrosomal exocytosis is essential for egg fertilization. ARF6 (ADP-ribosylation factor 6) is a small GTPase implicated in exocytosis, but its downstream effectors remain elusive in this process. We combined biochemical, functional, and microscopy-based methods to show that ARF6 is present in human sperm, localizes to the acrosomal region, and is required for calcium and diacylglycerol-induced exocytosis. Results from pulldown assays show that ARF6 exchanges GDP for GTP in sperm challenged with different exocytic stimuli. Myristoylated and guanosine 5'-3-O-(thio)triphosphate (GTPγS)-loaded ARF6 (active form) added to permeabilized sperm induces acrosome exocytosis even in the absence of extracellular calcium. We explore the ARF6 signaling cascade that promotes secretion. We demonstrate that ARF6 stimulates a sperm phospholipase D activity to produce phosphatidic acid and boosts the synthesis of phosphatidylinositol 4,5-bisphosphate. We present direct evidence showing that active ARF6 increases phospholipase C activity, causing phosphatidylinositol 4,5-bisphosphate hydrolysis and inositol 1,4,5-trisphosphate-dependent intra-acrosomal calcium release. We show that active ARF6 increases the exchange of GDP for GTP on Rab3A, a prerequisite for secretion. We propose that exocytic stimuli activate ARF6, which is required for acrosomal calcium efflux and the assembly of the membrane fusion machinery. This report highlights the physiological importance of ARF6 as a key factor for human sperm exocytosis and fertilization.


Asunto(s)
Factores de Ribosilacion-ADP/metabolismo , Acrosoma/fisiología , Exocitosis/fisiología , Metabolismo de los Lípidos/fisiología , Proteína de Unión al GTP rab3A/metabolismo , Factor 6 de Ribosilación del ADP , Acrosoma/efectos de los fármacos , Reacción Acrosómica/efectos de los fármacos , Reacción Acrosómica/fisiología , Calcio/metabolismo , Células Cultivadas , Diglicéridos/farmacología , Exocitosis/efectos de los fármacos , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Humanos , Immunoblotting , Inositol 1,4,5-Trifosfato/metabolismo , Inositol 1,4,5-Trifosfato/farmacología , Masculino , Microscopía Confocal , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfolipasa D/metabolismo , Espermatozoides/efectos de los fármacos , Espermatozoides/metabolismo , Espermatozoides/fisiología , Fosfolipasas de Tipo C/metabolismo
7.
Proc Natl Acad Sci U S A ; 109(30): E2057-66, 2012 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-22753498

RESUMEN

Two so-called "secretory Rabs," Rab3 and Rab27, regulate late steps during dense-core vesicle exocytosis in neuroendocrine cells. Sperm contain a single large dense-core granule that is released by regulated exocytosis (termed the acrosome reaction) during fertilization or on exposure to inducers in vitro. Sperm exocytosis uses the same fusion machinery as neurons and neuroendocrine cells, with an additional requirement for active Rab3. Here we show that Rab27 is also required for the acrosome reaction, as demonstrated by the inability of inducers to elicit exocytosis when streptolysin O-permeabilized human sperm were loaded with inhibitory anti-Rab27 antibodies or the Rab27-GTP binding domain of the effector Slac2-b. The levels of GTP-bound Rab27 increased on initiation of exocytosis, as did the proportion of GTP-bound Rab3A. We have developed a fluorescence microscopy-based method for detecting endogenous Rab3A-GTP and Rab27-GTP in the acrosomal region of human sperm. Challenge with an inducer increased the population of cells exhibiting GTP-bound Rabs in this subcellular domain. Interestingly, introducing recombinant Rab27A loaded with GTP-γ-S into sperm elicited a remarkable increase in the number of cells evincing GTP-bound Rab3A. In the converse condition, recombinant Rab3A did not modify the percentage of Rab27-GTP-containing cells. Furthermore, Rab27A-GTP recruited a Rab3 GDP/GTP exchange factor (GEF) activity. Our findings suggest that Rab27/Rab3A constitutes a Rab-GEF cascade in dense-core vesicle exocytosis.


Asunto(s)
Reacción Acrosómica/fisiología , Acrosoma/fisiología , Exocitosis/fisiología , Vesículas Secretoras/fisiología , Proteínas de Unión al GTP rab/metabolismo , Proteínas de Unión al GTP rab3/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Bacterianas , Western Blotting , Electroforesis en Gel de Poliacrilamida , Técnica del Anticuerpo Fluorescente Indirecta , Glutatión Transferasa , Guanosina Trifosfato/metabolismo , Humanos , Masculino , Microscopía Fluorescente , Prenilación , Proteínas Recombinantes/metabolismo , Vesículas Secretoras/metabolismo , Sefarosa , Estreptolisinas , Proteínas rab27 de Unión a GTP
8.
Cell Commun Signal ; 12: 43, 2014 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-25159528

RESUMEN

BACKGROUND: Exocytosis of sperm's single secretory granule or acrosome (acrosome reaction, AR) is a highly regulated event essential for fertilization. The AR begins with an influx of calcium from the extracellular milieu and continues with the synthesis of cAMP and the activation of its target Epac. The cascade bifurcates into a Rab3-GTP-driven limb that assembles the fusion machinery and a Rap-GTP-driven limb that mobilizes internal calcium. RESULTS: To understand the crosstalk between the two signaling cascades, we applied known AR inhibitors in three experimental approaches: reversible, stage-specific blockers in a functional assay, a far-immunofluorescence protocol to detect active Rab3 and Rap, and single cell-confocal microscopy to visualize fluctuations in internal calcium stores. Our model system was human sperm with their plasma membrane permeabilized with streptolysin O and stimulated with external calcium. The inhibition caused by reagents that prevented the activation of Rap was reversed by mobilizing intracellular calcium pharmacologically, whereas that caused by AR inhibitors that impeded Rab3's binding to GTP was not. Both limbs of the exocytotic cascade joined at or near the stage catalyzed by Rab3 in a unidirectional, hierarchical connection in which the intra-acrosomal calcium mobilization arm was subordinated to the fusion protein arm; somewhere after Rab3, the pathways became independent. CONCLUSIONS: We delineated the sequence of events that connect an external calcium signal to internal calcium mobilization during exocytosis. We have taken advantage of the versatility of the sperm model to investigate how cAMP, calcium, and the proteinaceous fusion machinery coordinate to accomplish secretion. Because the requirement of calcium from two different sources is not unique to sperm and fusion proteins are highly conserved, our findings might contribute to elucidate mechanisms that operate in regulated exocytosis in other secretory cell types.


Asunto(s)
Acrosoma/metabolismo , Calcio/metabolismo , Exocitosis/fisiología , Factores de Intercambio de Guanina Nucleótido/metabolismo , Proteínas de Unión al GTP rab3/metabolismo , Proteínas de Unión al GTP rap/metabolismo , Reacción Acrosómica , Humanos , Masculino , Proteína Tirosina Fosfatasa no Receptora Tipo 1/metabolismo , Transducción de Señal
9.
Cancers (Basel) ; 16(8)2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38672653

RESUMEN

Tipifarnib is the only targeted therapy breakthrough for HRAS-mutant (HRASmt) recurrent or metastatic head and neck squamous cell carcinoma (HNSCC). The molecular profiles of HRASmt cancers are difficult to explore given the low frequency of HRASmt. This study aims to understand the molecular co-alterations, immune profiles, and clinical outcomes of 524 HRASmt solid tumors including urothelial carcinoma (UC), breast cancer (BC), non-small-cell lung cancer (NSCLC), melanoma, and HNSCC. HRASmt was most common in UC (3.0%), followed by HNSCC (2.82%), melanoma (1.05%), BC (0.45%), and NSCLC (0.44%). HRASmt was absent in Her2+ BC regardless of hormone receptor status. HRASmt was more frequently associated with squamous compared to non-squamous NSCLC (60% vs. 40% in HRASwt, p = 0.002). The tumor microenvironment (TME) of HRASmt demonstrated increased M1 macrophages in triple-negative BC (TNBC), HNSCC, squamous NSCLC, and UC; increased M2 macrophages in TNBC; and increased CD8+ T-cells in HNSCC (all p < 0.05). Finally, HRASmt was associated with shorter overall survival in HNSCC (HR: 1.564, CI: 1.16-2.11, p = 0.003) but not in the other cancer types examined. In conclusion, this study provides new insights into the unique molecular profiles of HRASmt tumors that may help to identify new targets and guide future clinical trial design.

10.
Clin Cancer Res ; 30(2): 323-333, 2024 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-38047868

RESUMEN

PURPOSE: Chordomas are ultrarare tumors of the axial spine and skull-base without approved systemic therapy. Most chordomas have negative expression of thymidylate synthase (TS), suggesting a potential for responding to the antifolate agent pemetrexed, which inhibits TS and other enzymes involved in nucleotide biosynthesis. We evaluated the therapeutic activity and safety of high-dose pemetrexed in progressive chordoma. PATIENTS AND METHODS: Adult patients with previously treated, progressive chordoma participated in an open-label, single-institution, single-arm, pilot clinical trial of intravenous pemetrexed 900 mg/m2 every 3 weeks and supportive medications of folic acid, vitamin B12, and dexamethasone. The primary endpoint was objective response rate according to RECIST v1.1. Secondary endpoints included adverse events, progression-free survival (PFS), tumor molecular profiles, and alterations in tissue and blood-based biomarkers. RESULTS: Fifteen patients were enrolled and the median number of doses administered was 15 (range, 4-31). One patient discontinued treatment due to psychosocial issues after four cycles and one contracted COVID-19 after 13 cycles. Of the 14 response-evaluable patients, 2 (14%) achieved a partial response and 10 (71%) demonstrated stable disease. Median PFS was 10.5 months (95% confidence interval: 9 months-undetermined) and 6-month PFS was 67%. Adverse events were expected and relatively mild, with one grade 3 creatinine increased, and one each of grade 3 and 4 lymphopenia. No grade 5 adverse events, unexpected toxicities, or dose-limiting toxicities were observed. Several patients reported clinical improvement in disease-related symptoms. CONCLUSIONS: High-dose pemetrexed appears tolerable and shows objective antitumor activity in patients with chordoma. Phase II studies of high-dose pemetrexed are warranted.


Asunto(s)
Cordoma , Neoplasias Pulmonares , Adulto , Humanos , Pemetrexed/efectos adversos , Cordoma/patología , Proyectos Piloto , Glutamatos/efectos adversos , Guanina/uso terapéutico , Estadificación de Neoplasias , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Resultado del Tratamiento , Neoplasias Pulmonares/tratamiento farmacológico
11.
Cancer Cell ; 42(6): 1051-1066.e7, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38861924

RESUMEN

PD-1 blockade unleashes potent antitumor activity in CD8+ T cells but can also promote immunosuppressive T regulatory (Treg) cells, which may worsen the response to immunotherapy. Tumor-Treg inhibition is a promising strategy to improve the efficacy of checkpoint blockade immunotherapy; however, our understanding of the mechanisms supporting tumor-Tregs during PD-1 immunotherapy is incomplete. Here, we show that PD-1 blockade increases tumor-Tregs in mouse models of melanoma and metastatic melanoma patients. Mechanistically, Treg accumulation is not caused by Treg-intrinsic inhibition of PD-1 signaling but depends on an indirect effect of activated CD8+ T cells. CD8+ T cells produce IL-2 and colocalize with Tregs in mouse and human melanomas. IL-2 upregulates the anti-apoptotic protein ICOS on tumor-Tregs, promoting their accumulation. Inhibition of ICOS signaling before PD-1 immunotherapy improves control over immunogenic melanoma. Thus, interrupting the intratumor CD8+ T cell:Treg crosstalk represents a strategy to enhance the therapeutic efficacy of PD-1 immunotherapy.


Asunto(s)
Linfocitos T CD8-positivos , Inhibidores de Puntos de Control Inmunológico , Inmunoterapia , Proteína Coestimuladora de Linfocitos T Inducibles , Interleucina-2 , Melanoma , Receptor de Muerte Celular Programada 1 , Linfocitos T Reguladores , Animales , Linfocitos T CD8-positivos/inmunología , Linfocitos T Reguladores/inmunología , Humanos , Ratones , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Receptor de Muerte Celular Programada 1/inmunología , Receptor de Muerte Celular Programada 1/metabolismo , Melanoma/inmunología , Melanoma/terapia , Melanoma/tratamiento farmacológico , Proteína Coestimuladora de Linfocitos T Inducibles/metabolismo , Inmunoterapia/métodos , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Interleucina-2/inmunología , Ratones Endogámicos C57BL , Transducción de Señal , Melanoma Experimental/inmunología , Melanoma Experimental/terapia , Línea Celular Tumoral
12.
NPJ Precis Oncol ; 7(1): 118, 2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-37964075

RESUMEN

The incidence of sporadic early-onset colon cancer (EOCC) has increased worldwide. The molecular mechanisms in the tumor and the tumor microenvironment (TME) in EOCC are not fully understood. The aim of this study is to unravel unique spatial transcriptomic and proteomic profiles in tumor epithelial cells and cancer-associated fibroblasts (CAFs). Here, we divide the sporadic colon cancer tissue samples with transcriptomic data into patients diagnosed with EOCC (<50 yrs) and late-onset colon cancer (LOCC, ≥50 yrs) and then, analyze the data using CIBERSORTx deconvolution software. EOCC tumors are more enriched in CAFs with fibroblast associated protein positive expression (FAP(+)) than LOCC tumors. EOCC patients with higher FAP mRNA levels in CAFs have shorter OS (Log-rank test, p < 0.029). Spatial transcriptomic analysis of 112 areas of interest, using NanoString GeoMx digital spatial profiling, demonstrate that FAP(+) CAFs at the EOCC tumor invasive margin show a significant upregulation of WNT signaling and higher mRNA/protein levels of fibroblast growth factor 20 (FGF20). Tumor epithelial cells at tumor invasive margin of EOCC tumors neighboring FAP(+) CAFs show significantly higher mRNA/protein levels of fibroblast growth factor receptor (FGFR2) and PI3K/Akt signaling activation. NichNET analysis show a potential interaction between FGF20 and FGFFR2. The role of FGF20 in activating FGFR2/pFGFR2 and AKT/pAKT was validated in-vitro. In conclusion, we identify a unique FAP(+) CAF population that showed WNT signaling upregulation and increased FGF20 levels; while neighbor tumor cells show the upregulation/activation of FGFR2-PI3K/Akt signaling at the tumor invasive margin of EOCC tumors.

13.
Cells ; 12(11)2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-37296634

RESUMEN

Previous studies from our lab demonstrated that the crosstalk between brain-metastasizing melanoma cells and microglia, the macrophage-like cells of the central nervous system, fuels progression to metastasis. In the present study, an in-depth investigation of melanoma-microglia interactions elucidated a pro-metastatic molecular mechanism that drives a vicious melanoma-brain-metastasis cycle. We employed RNA-Sequencing, HTG miRNA whole transcriptome assay, and reverse phase protein arrays (RPPA) to analyze the impact of melanoma-microglia interactions on sustainability and progression of four different human brain-metastasizing melanoma cell lines. Microglia cells exposed to melanoma-derived IL-6 exhibited upregulated levels of STAT3 phosphorylation and SOCS3 expression, which, in turn, promoted melanoma cell viability and metastatic potential. IL-6/STAT3 pathway inhibitors diminished the pro-metastatic functions of microglia and reduced melanoma progression. SOCS3 overexpression in microglia cells evoked microglial support in melanoma brain metastasis by increasing melanoma cell migration and proliferation. Different melanomas exhibited heterogeneity in their microglia-activating capacity as well as in their response to microglia-derived signals. In spite of this reality and based on the results of the present study, we concluded that the activation of the IL-6/STAT3/SOCS3 pathway in microglia is a major mechanism by which reciprocal melanoma-microglia signaling engineers the interacting microglia to reinforce the progression of melanoma brain metastasis. This mechanism may operate differently in different melanomas.


Asunto(s)
Neoplasias Encefálicas , Melanoma , Humanos , Microglía/metabolismo , Interleucina-6/metabolismo , Transducción de Señal , Proteínas Supresoras de la Señalización de Citocinas/genética , Proteínas Supresoras de la Señalización de Citocinas/metabolismo , Melanoma/patología , Neoplasias Encefálicas/metabolismo , Encéfalo/metabolismo , Factor de Transcripción STAT3/metabolismo
14.
Cancer Res Commun ; 3(7): 1397-1408, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37529399

RESUMEN

The arachidonic acid pathway participates in immunosuppression in various types of cancer. Our previous observation detailed that microsomal prostaglandin E2 synthase 1 (mPGES-1), an enzyme downstream of cyclooxygenase 2 (COX-2), limited antitumor immunity in melanoma; in addition, genetic depletion of mPGES-1 specifically enhanced immune checkpoint blockade therapy. The current study set out to distinguish the roles of mPGES-1 from those of COX-2 in tumor immunity and determine the potential of mPGES-1 inhibitors for reinforcing immunotherapy in melanoma. Genetic deletion of mPGES-1 showed different profiles of prostaglandin metabolites from that of COX-2 deletion. In our syngeneic mouse model, mPGES-1-deficient cells exhibited similar tumorigenicity to that of COX-2-deficient cells, despite a lower ability to suppress PGE2 synthesis by mPGES-1 depletion, indicating the presence of factors other than PGE2 that are likely to regulate tumor immunity. RNA-sequencing analysis revealed that mPGES-1 depletion reduced the expressions of collagen-related genes, which have been found to be associated with immunosuppressive signatures. In our mouse model, collagen was reduced in mPGES-1-deficient tumors, and phenotypic analysis of tumor-infiltrating lymphocytes indicated that mPGES-1-deficient tumors had fewer TIM3+ exhausted CD8+ T cells compared with COX-2-deficient tumors. CAY10678, an mPGES-1 inhibitor, was equivalent to celecoxib, a selective COX-2 inhibitor, in reinforcing anti-PD-1 treatment. Our study indicates that mPGES-1 inhibitors represent a promising adjuvant for immunotherapies in melanoma by reducing collagen deposition and T-cell exhaustion. Significance: Collagen is a predominant component of the extracellular matrix that may influence the tumor immune microenvironment for cancer progression. We present here that mPGES-1 has specific roles in regulating tumor immunity, associated with several collagen-related genes and propose that pharmacologic inhibition of mPGES-1 may hold therapeutic promise for improving immune checkpoint-based therapies.


Asunto(s)
Oxidorreductasas Intramoleculares , Melanoma , Animales , Ratones , Prostaglandina-E Sintasas/genética , Oxidorreductasas Intramoleculares/genética , Ciclooxigenasa 2/genética , Dinoprostona/metabolismo , Linfocitos T CD8-positivos/metabolismo , Agotamiento de Células T , Melanoma/tratamiento farmacológico , Ciclooxigenasa 1 , Colágeno , Inmunoterapia , Microambiente Tumoral
15.
Cell Biosci ; 13(1): 200, 2023 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-37932806

RESUMEN

BACKGROUND: Poly (ADP-ribose) polymerase inhibitors (PARPi) are approved for the treatment of BRCA-mutated breast cancer (BC), including triple-negative BC (TNBC) and ovarian cancer (OvCa). A key challenge is to identify the factors associated with PARPi resistance; although, previous studies suggest that platinum-based agents and PARPi share similar resistance mechanisms. METHODS: Olaparib-resistant (OlaR) cell lines were analyzed using HTG EdgeSeq miRNA Whole Transcriptomic Analysis (WTA). Functional assays were performed in three BRCA-mutated TNBC cell lines. In-silico analysis were performed using multiple databases including The Cancer Genome Atlas, the Genotype-Tissue Expression, The Cancer Cell Line Encyclopedia, Genomics of Drug Sensitivity in Cancer, and Gene Omnibus Expression. RESULTS: High miR-181a levels were identified in OlaR TNBC cell lines (p = 0.001) as well as in tumor tissues from TNBC patients (p = 0.001). We hypothesized that miR-181a downregulates the stimulator of interferon genes (STING) and the downstream proinflammatory cytokines to mediate PARPi resistance. BRCA1 mutated TNBC cell lines with miR-181a-overexpression were more resistant to olaparib and showed downregulation in STING and the downstream genes controlled by STING. Extracellular vesicles derived from PARPi-resistant TNBC cell lines horizontally transferred miR-181a to parental cells which conferred PARPi-resistance and targeted STING. In clinical settings, STING levels were positively correlated with interferon gamma (IFNG) response scores (p = 0.01). In addition, low IFNG response scores were associated with worse response to neoadjuvant treatment including PARPi for high-risk HER2 negative BC patients (p = 0.001). OlaR TNBC cell lines showed resistance to platinum-based drugs. OvCa cell lines resistant to platinum showed resistance to olaparib. Knockout of miR-181a significantly improved olaparib sensitivity in OvCa cell lines (p = 0.001). CONCLUSION: miR-181a is a key factor controlling the STING pathway and driving PARPi and platinum-based drug resistance in TNBC and OvCa. The miR-181a-STING axis can be used as a potential marker for predicting PARPi responses in TNBC and OvCa tumors.

16.
NPJ Precis Oncol ; 7(1): 120, 2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-37964004

RESUMEN

Melanoma brain metastases (MBM) are clinically challenging to treat and exhibit variable responses to immune checkpoint therapies. Prior research suggests that MBM exhibit poor tumor immune responses and are enriched in oxidative phosphorylation. Here, we report results from a multi-omic analysis of a large, real-world melanoma cohort. MBM exhibited lower interferon-gamma (IFNγ) scores and T cell-inflamed scores compared to primary cutaneous melanoma (PCM) or extracranial metastases (ECM), which was independent of tumor mutational burden. Among MBM, there were fewer computationally inferred immune cell infiltrates, which correlated with lower TNF and IL12B mRNA levels. Ingenuity pathway analysis (IPA) revealed suppression of inflammatory responses and dendritic cell maturation pathways. MBM also demonstrated a higher frequency of pathogenic PTEN mutations and angiogenic signaling. Oxidative phosphorylation (OXPHOS) was enriched in MBM and negatively correlated with NK cell and B cell-associated transcriptomic signatures. Modulating metabolic or angiogenic pathways in MBM may improve responses to immunotherapy in this difficult-to-treat patient subset.

17.
Cancers (Basel) ; 14(4)2022 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-35205608

RESUMEN

Circulating tumor cells (CTCs) have been studied using multiple technical approaches for interrogating various cancers, as they allow for the real-time assessment of tumor progression, disease recurrence, treatment response, and tumor molecular profiling without the need for a tumor tissue biopsy. Here, we will review studies from the last 15 years on the assessment of CTCs in cutaneous melanoma patients in relation to different clinical outcomes. The focus will be on CTC detection in blood samples obtained from cutaneous melanoma patients of different clinical stages and treatments utilizing multiple platforms. Assessment of multiple molecular melanoma-associated antigen (MAA) markers by quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) was the most common assay allowing for the improvement of assay sensitivity, tumor heterogeneity, and to predict patient outcomes. Multicenter studies demonstrate the utility of CTC assays reducing the bias observed in single- center trials. The recent development of CTC enrichment platforms has provided reproducible methods. CTC assessment enables both multiple mRNAs and DNAs genomic aberration profiling. CTC provides specific important translational information on tumor progression, prediction of treatment response, and survival outcomes for cutaneous melanoma patients. The molecular studies on melanoma CTCs have provided and may set standards for other solid tumor CTC analyses.

18.
Cells ; 11(20)2022 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-36291176

RESUMEN

Ubiquilin-4 (UBQLN4) is a proteasomal shuttle factor that directly binds to ubiquitylated proteins and delivers its cargo to the 26S proteasome for degradation. We previously showed that upregulated UBQLN4 determines the DNA damage response (DDR) through the degradation of MRE11A. However, the regulatory mechanism at DNA level, transcriptionally and post-transcriptional levels that control UBQLN4 mRNA levels remains unknown. In this study, we screened 32 solid tumor types and validated our findings by immunohistochemistry analysis. UBQLN4 is upregulated at both mRNA and protein levels and the most significant values were observed in liver, breast, ovarian, lung, and esophageal cancers. Patients with high UBQLN4 mRNA levels had significantly poor prognoses in 20 of 32 cancer types. DNA amplification was identified as the main mechanism promoting UBQLN4 upregulation in multiple cancers, even in the early phases of tumor development. Using CRISPR screen datasets, UBQLN4 was identified as a common essential gene for tumor cell viability in 81.1% (860/1,060) of the solid tumor derived cell lines. Ovarian cancer cell lines with high UBQLN4 mRNA levels were platinum-based chemotherapy resistant, while they were more sensitive to poly (adenosine diphosphate-ribose) polymerase inhibitors (PARPi). Our findings highlight the utilities of UBQLN4 as a significant pan-cancer theranostic factor and a precision oncology biomarker for DDR-related drug resistance.


Asunto(s)
Neoplasias Ováricas , Factores R , Femenino , Humanos , Pronóstico , Ribosa , Medicina de Precisión , Poli(ADP-Ribosa) Polimerasas , ADN , Genómica , ARN Mensajero/genética , Adenosina Difosfato , Proteínas Portadoras , Proteínas Nucleares
19.
Clin Exp Metastasis ; 39(1): 61-69, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-33950411

RESUMEN

Brain metastasis (BM) frequently occurs in patients with cutaneous melanoma, lung, and breast cancer; although, BM rarely arises from cancers of the gastrointestinal tract (GIT). The reported incidence of GIT cancer BM is less than 4%. In the last few years, effective systemic therapy has prolonged the survival of GIT patients and consequently, the incidence of developing BM is rising. Therefore, the epidemiology and biology of BM arising from GIT cancer requires a more comprehensive understanding. In spite of the development of new therapeutic agents for patients with metastatic GIT cancers, survival for patients with BM still remains poor, with a median survival after diagnosis of less than 4 months. Limited evidence suggests that early detection of isolated intra-cranial lesions will enable surgical resection plus systemic and/or radiation therapy, which may lead to an increase in overall survival. Novel diagnostic methods such as blood-based biomarker biopsies may play a crucial role in the early detection of BM. Circulating tumor cells and circulating cell-free nucleic acids are known to serve as blood biomarkers for early detection and treatment response monitoring of multiple cancers. Blood biopsy may improve early diagnosis and treatment monitoring of GIT cancers BM, thus prolonging patients' survivals.


Asunto(s)
Neoplasias Encefálicas , Neoplasias Gastrointestinales , Melanoma , Neoplasias Cutáneas , Biomarcadores de Tumor , Biopsia , Neoplasias Encefálicas/secundario , Neoplasias Gastrointestinales/patología , Humanos
20.
Cancers (Basel) ; 14(10)2022 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-35625992

RESUMEN

Prostate cancer (PCa) is the most common cancer in men. Prostate-specific antigen screening is recommended for the detection of PCa. However, its specificity is limited. Thus, there is a need to find more reliable biomarkers that allow non-invasive screening for early-stage PCa. This study aims to explore urine microRNAs (miRs) as diagnostic biomarkers for PCa. We assessed cell-free miR (cfmiR) profiles of urine and plasma samples from pre- and post-operative PCa patients (n = 11) and normal healthy donors (16 urine and 24 plasma) using HTG EdgeSeq miRNA Whole Transcriptome Assay based on next-generation sequencing. Furthermore, tumor-related miRs were detected in formalin-fixed paraffin-embedded tumor tissues obtained from patients with localized PCa. Specific cfmiRs signatures were found in urine samples of localized PCa patients using differential expression analysis. Forty-two cfmiRs that were detected were common to urine, plasma, and tumor samples. These urine cfmiRs may have potential utility in diagnosing early-stage PCa and complementing or improving currently available PCa screening assays. Future studies may validate the findings.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA