Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-26672034

RESUMEN

Image-guided surgery is today considered to be of significant importance in neurosurgical applications. However, one of its major shortcomings is its reliance on preoperative image data, which does not account for brain deformations and displacements that occur during surgery. In this work, we propose to tackle this issue through the incorporation of an ultrasound device within the type of biopsy needles commonly used as an interventional tool to provide immediate feedback to neurosurgeons during surgical procedures. To identify the most appropriate path to access a targeted tissue site, single-element transducers that look either forward or sideways have been designed and fabricated. Micromolded 1-3 piezocomposites were adopted as the active materials for feasibility tests and epoxy lenses have been applied to focus the ultrasound beam. Electrical impedance analysis, pulse-echo testing, and wire phantom scanning have been carried out, demonstrating the functionality of the needle transducers at [Formula: see text]. The capabilities of these transducers for intraoperative image guidance were demonstrated by imaging within soft-embalmed cadaveric human brain and fresh porcine brain.


Asunto(s)
Procedimientos Neuroquirúrgicos/instrumentación , Cirugía Asistida por Computador/instrumentación , Transductores , Ultrasonografía Intervencional/instrumentación , Animales , Encéfalo/cirugía , Diseño de Equipo , Humanos , Agujas , Fantasmas de Imagen , Porcinos
2.
Artículo en Inglés | MEDLINE | ID: mdl-22899129

RESUMEN

High-frequency ultrasound is needed for medical imaging with high spatial resolution. A key issue in the development of ultrasound imaging arrays to operate at high frequencies (≥30 MHz) is the need for photolithographic patterning of array electrodes. To achieve this directly on 1-3 piezocomposite, the material requires not only planar, parallel, and smooth surfaces, but also an epoxy composite filler that is resistant to chemicals, heat, and vacuum. This paper reports, first, on the surface finishing of 1-3 piezocomposite materials by lapping and polishing. Excellent surface flatness has been obtained, with an average surface roughness of materials as low as 3 nm and step heights between ceramic/polymer of ∼80 nm. Subsequently, high-frequency array elements were patterned directly on top of these surfaces using a photolithography process. A 30-MHz linear array electrode pattern with 50-µm element pitch has been patterned on the lapped and polished surface of a high-frequency 1-3 piezocomposite. Excellent electrode edge definition and electrical contact to the composite were obtained. The composite has been lapped to a final thickness of ∼55 µm. Good adhesion of electrodes on the piezocomposite has been achieved and electrical impedance measurements have demonstrated their basic functionality. The array was then packaged, and acoustic pulse-echo measurements were performed. These results demonstrate that direct patterning of electrodes by photolithography on 1-3 piezocomposite is feasible for fabrication of high-frequency ultrasound arrays. Furthermore, this method is more conducive to mass production than other reported array fabrication techniques.


Asunto(s)
Transductores , Ultrasonografía/instrumentación , Óxido de Aluminio/química , Impedancia Eléctrica , Electrodos , Microtecnología/instrumentación
3.
Dalton Trans ; 39(4): 1089-94, 2010 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-20066195

RESUMEN

This paper discusses the effects of cation substitutions on the structural (and linked electronic) transition which has been observed in Na(0.63)CoO(2). The effects of the following substitutions are reported: Ca on the Na site; Fe and Ni on the Co site. Ca doping suppresses the transition and is suggested to interfere with the Na ordering and hence causes a variation in the electronic structure. Fe and Ni doped samples all show transitions, but the transition temperature decreases with the dopant cation concentration. This implies that the replacement of Co by Fe and Ni may enhance the instability in the low-temperature regime. The influence of the substitution is also reflected in the structure and magnetic behaviour of the doped samples.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA