Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Sensors (Basel) ; 24(7)2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38610374

RESUMEN

After an ACL injury, rehabilitation consists of multiple phases, and progress between these phases is guided by subjective visual assessments of activities such as running, hopping, jump landing, etc. Estimation of objective kinetic measures like knee joint moments and GRF during assessment can help physiotherapists gain insights on knee loading and tailor rehabilitation protocols. Conventional methods deployed to estimate kinetics require complex, expensive systems and are limited to laboratory settings. Alternatively, multiple algorithms have been proposed in the literature to estimate kinetics from kinematics measured using only IMUs. However, the knowledge about their accuracy and generalizability for patient populations is still limited. Therefore, this article aims to identify the available algorithms for the estimation of kinetic parameters using kinematics measured only from IMUs and to evaluate their applicability in ACL rehabilitation through a comprehensive systematic review. The papers identified through the search were categorized based on the modelling techniques and kinetic parameters of interest, and subsequently compared based on the accuracies achieved and applicability for ACL patients during rehabilitation. IMUs have exhibited potential in estimating kinetic parameters with good accuracy, particularly for sagittal movements in healthy cohorts. However, several shortcomings were identified and future directions for improvement have been proposed, including extension of proposed algorithms to accommodate multiplanar movements and validation of the proposed techniques in diverse patient populations and in particular the ACL population.


Asunto(s)
Lesiones del Ligamento Cruzado Anterior , Toma de Decisiones Clínicas , Humanos , Algoritmos , Estado de Salud , Cinética
2.
J Neuroeng Rehabil ; 20(1): 1, 2023 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-36635703

RESUMEN

BACKGROUND: When developing new lower limb prostheses, prototypes are tested to obtain insights into the performance. However, large variations between research protocols may complicate establishing the potential added value of newly developed prototypes over other prostheses. OBJECTIVE: This review aims at identifying participant characteristics, research protocols, reference values, aims, and corresponding outcome measures used during prosthesis prototype testing on people with a transfemoral amputation. METHODS: A systematic search was done on PubMed and Scopus from 2000 to December 2020. Articles were included if testing was done on adults with transfemoral or knee disarticulation amputation; testing involved walking with a non-commercially available prototype leg prosthesis consisting of at least a knee component; and included evaluations of the participants' functioning with the prosthesis prototype. RESULTS: From the initial search of 2027 articles, 48 articles were included in this review. 20 studies were single-subject studies and 4 studies included a cohort of 10 or more persons with a transfemoral amputation. Only 5 articles reported all the pre-defined participant characteristics that were deemed relevant. The familiarization time with the prosthesis prototype prior to testing ranged from 5 to 10 min to 3 months; in 25% of the articles did not mention the extent of the familiarization period. Mobility was most often mentioned as the development or testing aim. A total of 270 outcome measures were identified, kinetic/kinematic gait parameters were most often reported. The majority of outcome measures corresponded to the mobility aim. For 48% of the stated development aims and 4% of the testing aims, no corresponding outcome measure could be assigned. Results indicated large inconsistencies in research protocols and outcome measures used to validate pre-determined aims. CONCLUSIONS: The large variation in prosthesis prototype testing and reporting calls for the development of a core set of reported participant characteristics, testing protocols, and specific and well-founded outcome measures, tailored to the various aims and development phases. The use of such a core set can give greater insights into progress of developments and determine which developments have additional benefits over the state-of-the-art. This review may contribute as initial input towards the development of such a core set.


Asunto(s)
Amputados , Miembros Artificiales , Adulto , Humanos , Amputación Quirúrgica , Marcha , Caminata , Rodilla
3.
Sensors (Basel) ; 23(16)2023 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-37631813

RESUMEN

Integrated Ultra-wideband (UWB) and Magnetic Inertial Measurement Unit (MIMU) sensor systems have been gaining popularity for pedestrian tracking and indoor localization applications, mainly due to their complementary error characteristics that can be exploited to achieve higher accuracies via a data fusion approach. These integrated sensor systems have the potential for improving the ambulatory 3D analysis of human movement (estimating 3D kinematics of body segments and joints) over systems using only on-body MIMUs. For this, high accuracy is required in the estimation of the relative positions of all on-body integrated UWB/MIMU sensor modules. So far, these integrated UWB/MIMU sensors have not been reported to have been applied for full-body ambulatory 3D analysis of human movement. Also, no review articles have been found that have analyzed and summarized the methods integrating UWB and MIMU sensors for on-body applications. Therefore, a comprehensive analysis of this technology is essential to identify its potential for application in 3D analysis of human movement. This article thus aims to provide such a comprehensive analysis through a structured technical review of the methods integrating UWB and MIMU sensors for accurate position estimation in the context of the application for 3D analysis of human movement. The methods used for integration are all summarized along with the accuracies that are reported in the reviewed articles. In addition, the gaps that are required to be addressed for making this system applicable for the 3D analysis of human movement are discussed.


Asunto(s)
Movimiento , Peatones , Humanos , Tecnología
4.
J Neuroeng Rehabil ; 19(1): 13, 2022 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-35090501

RESUMEN

BACKGROUND: Exoskeletons are working in parallel to the human body and can support human movement by exerting forces through cuffs or straps. They are prone to misalignments caused by simplified joint mechanics and incorrect fit or positioning. Those misalignments are a common safety concern as they can cause undesired interaction forces. However, the exact mechanisms and effects of misalignments on the joint load are not yet known. The aim of this study was therefore to investigate the influence of different directions and magnitudes of exoskeleton misalignment on the internal knee joint forces and torques of an artificial leg. METHODS: An instrumented leg simulator was used to quantify the changes in knee joint load during the swing phase caused by misalignments of a passive knee brace being manually flexed. This was achieved by an experimenter pulling on a rope attached to the distal end of the knee brace to create a flexion torque. The extension was not actuated but achieved through the weight of the instrumented leg simulator. The investigated types of misalignments are a rotation of the brace around the vertical axis and a translation in anteroposterior as well as proximal/distal direction. RESULTS: The amount of misalignment had a significant effect on several directions of knee joint load in the instrumented leg simulator. In general, load on the knee joint increased with increasing misalignment. Specifically, stronger rotational misalignment led to higher forces in mediolateral direction in the knee joint as well as higher ab-/adduction, flexion and internal/external rotation torques. Stronger anteroposterior translational misalignment led to higher mediolateral knee forces as well as higher abduction and flexion/extension torques. Stronger proximal/distal translational misalignment led to higher posterior and tension/compression forces. CONCLUSIONS: Misalignments of a lower leg exoskeleton can increase internal knee forces and torques during swing to a multiple of those experienced in a well-aligned situation. Despite only taking swing into account, this is supporting the need for carefully considering hazards associated with not only translational but also rotational misalignments during wearable robot development and use. Also, this warrants investigation of misalignment effects in stance, as a target of many exoskeleton applications.


Asunto(s)
Dispositivo Exoesqueleto , Fenómenos Biomecánicos , Humanos , Articulación de la Rodilla , Pierna , Rango del Movimiento Articular , Torque
5.
J Neuroeng Rehabil ; 19(1): 2, 2022 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-35016694

RESUMEN

BACKGROUND: Upper limb kinematic assessments provide quantifiable information on qualitative movement behavior and limitations after stroke. A comprehensive characterization of spatiotemporal kinematics of stroke subjects during upper limb daily living activities is lacking. Herein, kinematic expressions were investigated with respect to different movement types and impairment levels for the entire task as well as for motion subphases. METHOD: Chronic stroke subjects with upper limb movement impairments and healthy subjects performed a set of daily living activities including gesture and grasp movements. Kinematic measures of trunk displacement, shoulder flexion/extension, shoulder abduction/adduction, elbow flexion/extension, forearm pronation/supination, wrist flexion/extension, movement time, hand peak velocity, number of velocity peaks (NVP), and spectral arc length (SPARC) were extracted for the whole movement as well as the subphases of reaching distally and proximally. The effects of the factors gesture versus grasp movements, and the impairment level on the kinematics of the whole task were tested. Similarities considering the metrics expressions and relations were investigated for the subphases of reaching proximally and distally between tasks and subgroups. RESULTS: Data of 26 stroke and 5 healthy subjects were included. Gesture and grasp movements were differently expressed across subjects. Gestures were performed with larger shoulder motions besides higher peak velocity. Grasp movements were expressed by larger trunk, forearm, and wrist motions. Trunk displacement, movement time, and NVP increased and shoulder flexion/extension decreased significantly with increased impairment level. Across tasks, phases of reaching distally were comparable in terms of trunk displacement, shoulder motions and peak velocity, while reaching proximally showed comparable expressions in trunk motions. Consistent metric relations during reaching distally were found between shoulder flexion/extension, elbow flexion/extension, peak velocity, and between movement time, NVP, and SPARC. Reaching proximally revealed reproducible correlations between forearm pronation/supination and wrist flexion/extension, movement time and NVP. CONCLUSION: Spatiotemporal differences between gestures versus grasp movements and between different impairment levels were confirmed. The consistencies of metric expressions during movement subphases across tasks can be useful for linking kinematic assessment standards and daily living measures in future research and performing task and study comparisons. TRIAL REGISTRATION: ClinicalTrials.gov Identifier NCT03135093. Registered 26 April 2017, https://clinicaltrials.gov/ct2/show/NCT03135093 .


Asunto(s)
Trastornos Motores , Accidente Cerebrovascular , Fenómenos Biomecánicos , Humanos , Movimiento , Accidente Cerebrovascular/complicaciones , Extremidad Superior , Articulación de la Muñeca
6.
Sensors (Basel) ; 22(17)2022 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-36080810

RESUMEN

Pattern recognition in EMG-based control systems suffer from increase in error rate over time, which could lead to unwanted behavior. This so-called concept drift in myoelectric control systems could be caused by fatigue, sensor replacement and varying skin conditions. To circumvent concept drift, adaptation strategies could be used to retrain a pattern recognition system, which could lead to comparable error rates over multiple days. In this study, we investigated the error rate development over one week and compared three adaptation strategies to reduce the error rate increase. The three adaptation strategies were based on entropy, on backward prediction and a combination of backward prediction and entropy. Ten able-bodied subjects were measured on four measurement days while performing gait-related activities. During the measurement electromyography and kinematics were recorded. The three adaptation strategies were implemented and compared against the baseline error rate and against adaptation using the ground truth labels. It can be concluded that without adaptation the baseline error rate increases significantly from day 1 to 2, but plateaus on day 2, 3 and 7. Of the three tested adaptation strategies, entropy based adaptation showed the smallest increase in error rate over time. It can be concluded that entropy based adaptation is simple to implement and can be considered a feasible adaptation strategy for lower limb pattern recognition.


Asunto(s)
Miembros Artificiales , Electromiografía , Marcha , Humanos , Extremidad Inferior , Reconocimiento de Normas Patrones Automatizadas
7.
Sensors (Basel) ; 22(8)2022 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-35458993

RESUMEN

Physical exercise (PE) is beneficial for both physical and psychological health aspects. However, excessive training can lead to physical fatigue and an increased risk of lower limb injuries. In order to tailor training loads and durations to the needs and capacities of an individual, physical fatigue must be estimated. Different measurement devices and techniques (i.e., ergospirometers, electromyography, and motion capture systems) can be used to identify physical fatigue. The field of biomechanics has succeeded in capturing changes in human movement with optical systems, as well as with accelerometers or inertial measurement units (IMUs), the latter being more user-friendly and adaptable to real-world scenarios due to its wearable nature. There is, however, still a lack of consensus regarding the possibility of using biomechanical parameters measured with accelerometers to identify physical fatigue states in PE. Nowadays, the field of biomechanics is beginning to open towards the possibility of identifying fatigue state using machine learning algorithms. Here, we selected and summarized accelerometer-based articles that either (a) performed analyses of biomechanical parameters that change due to fatigue in the lower limbs or (b) performed fatigue identification based on features including biomechanical parameters. We performed a systematic literature search and analysed 39 articles on running, jumping, walking, stair climbing, and other gym exercises. Peak tibial and sacral acceleration were the most common measured variables and were found to significantly increase with fatigue (respectively, in 6/13 running articles and 2/4 jumping articles). Fatigue classification was performed with an accuracy between 78% and 96% and Pearson's correlation with an RPE (rate of perceived exertion) between r = 0.79 and r = 0.95. We recommend future effort toward the standardization of fatigue protocols and methods across articles in order to generalize fatigue identification results and increase the use of accelerometers to quantify physical fatigue in PE.


Asunto(s)
Carrera , Acelerometría , Fenómenos Biomecánicos , Ejercicio Físico , Fatiga , Humanos , Extremidad Inferior
8.
Sensors (Basel) ; 22(3)2022 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-35161701

RESUMEN

A Drift-Free 3D Orientation and Displacement estimation method (DFOD) based on a single inertial measurement unit (IMU) is proposed and validated. Typically, body segment orientation and displacement methods rely on a constant- or zero-velocity point to correct for drift. Therefore, they are not easily applicable to more proximal segments than the foot. DFOD uses an alternative single sensor drift reduction strategy based on the quasi-cyclical nature of many human movements. DFOD assumes that the quasi-cyclical movement occurs in a quasi-2D plane and with an approximately constant cycle average velocity. DFOD is independent of a constant- or zero-velocity point, a biomechanical model, Kalman filtering or a magnetometer. DFOD reduces orientation drift by assuming a cyclical movement, and by defining a functional coordinate system with two functional axes. These axes are based on the mean acceleration and rotation axes over multiple complete gait cycles. Using this drift-free orientation estimate, the displacement of the sensor is computed by again assuming a cyclical movement. Drift in displacement is reduced by subtracting the mean value over five gait cycle from the free acceleration, velocity, and displacement. Estimated 3D sensor orientation and displacement for an IMU on the lower leg were validated with an optical motion capture system (OMCS) in four runners during constant velocity treadmill running. Root mean square errors for sensor orientation differences between DFOD and OMCS were 3.1 ± 0.4° (sagittal plane), 5.3 ± 1.1° (frontal plane), and 5.0 ± 2.1° (transversal plane). Sensor displacement differences had a root mean square error of 1.6 ± 0.2 cm (forward axis), 1.7 ± 0.6 cm (mediolateral axis), and 1.6 ± 0.2 cm (vertical axis). Hence, DFOD is a promising 3D drift-free orientation and displacement estimation method based on a single IMU in quasi-cyclical movements with many advantages over current methods.


Asunto(s)
Aceleración , Carrera , Fenómenos Biomecánicos , Humanos , Movimiento , Rotación
9.
J Neuroeng Rehabil ; 18(1): 162, 2021 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-34749752

RESUMEN

BACKGROUND: Technology-supported rehabilitation can help alleviate the increasing need for cost-effective rehabilitation of neurological conditions, but use in clinical practice remains limited. Agreement on a core set of reliable, valid and accessible outcome measures to assess rehabilitation outcomes is needed to generate strong evidence about effectiveness of rehabilitation approaches, including technologies. This paper collates and synthesizes a core set from multiple sources; combining existing evidence, clinical practice guidelines and expert consensus into European recommendations for Clinical Assessment of Upper Limb In Neurorehabilitation (CAULIN). METHODS: Data from systematic reviews, clinical practice guidelines and expert consensus (Delphi methodology) were systematically extracted and synthesized using strength of evidence rating criteria, in addition to recommendations on assessment procedures. Three sets were defined: a core set: strong evidence for validity, reliability, responsiveness and clinical utility AND recommended by at least two sources; an extended set: strong evidence OR recommended by at least two sources and a supplementary set: some evidence OR recommended by at least one of the sources. RESULTS: In total, 12 measures (with primary focus on stroke) were included, encompassing body function and activity level of the International Classification of Functioning and Health. The core set recommended for clinical practice and research: Fugl-Meyer Assessment of Upper Extremity (FMA-UE) and Action Research Arm Test (ARAT); the extended set recommended for clinical practice and/or clinical research: kinematic measures, Box and Block Test (BBT), Chedoke Arm Hand Activity Inventory (CAHAI), Wolf Motor Function Test (WMFT), Nine Hole Peg Test (NHPT) and ABILHAND; the supplementary set recommended for research or specific occasions: Motricity Index (MI); Chedoke-McMaster Stroke Assessment (CMSA), Stroke Rehabilitation Assessment Movement (STREAM), Frenchay Arm Test (FAT), Motor Assessment Scale (MAS) and body-worn movement sensors. Assessments should be conducted at pre-defined regular intervals by trained personnel. Global measures should be applied within 24 h of hospital admission and upper limb specific measures within 1 week. CONCLUSIONS: The CAULIN recommendations for outcome measures and assessment procedures provide a clear, simple, evidence-based three-level structure for upper limb assessment in neurological rehabilitation. Widespread adoption and sustained use will improve quality of clinical practice and facilitate meta-analysis, critical for the advancement of technology-supported neurorehabilitation.


Asunto(s)
Rehabilitación de Accidente Cerebrovascular , Accidente Cerebrovascular , Consenso , Mano , Humanos , Recuperación de la Función , Reproducibilidad de los Resultados , Rehabilitación de Accidente Cerebrovascular/métodos , Extremidad Superior
10.
J Neuroeng Rehabil ; 18(1): 144, 2021 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-34560898

RESUMEN

BACKGROUND: The cause of smoothness deficits as a proxy for quality of movement post stroke is currently unclear. Previous simulation analyses showed that spectral arc length (SPARC) is a valid metric for investigating smoothness during a multi-joint goal-directed reaching task. The goal of this observational study was to investigate how SPARC values change over time, and whether SPARC is longitudinally associated with the recovery from motor impairments reflected by the Fugl-Meyer motor assessment of the upper extremity (FM-UE) in the first 6 months after stroke. METHODS: Forty patients who suffered a first-ever unilateral ischemic stroke (22 males, aged 58.6 ± 12.5 years) with upper extremity paresis underwent kinematic and clinical measurements in weeks 1, 2, 3, 4, 5, 8, 12, and 26 post stroke. Clinical measures included amongst others FM-UE. SPARC was obtained by three-dimensional kinematic measurements using an electromagnetic motion tracking system during a reach-to-grasp movement. Kinematic assessments of 12 healthy, age-matched individuals served as reference. Longitudinal linear mixed model analyses were performed to determine SPARC change over time, compare smoothness in patients with reference values of healthy individuals, and establish the longitudinal association between SPARC and FM-UE scores. RESULTS: SPARC showed a significant positive longitudinal association with FM-UE (B: 31.73, 95%-CI: [27.27 36.20], P < 0.001), which encompassed significant within- and between-subject effects (B: 30.85, 95%-CI: [26.28 35.41], P < 0.001 and B: 50.59, 95%-CI: [29.97 71.21], P < 0.001, respectively). Until 5 weeks post stroke, progress of time contributed significantly to the increase in SPARC and FM-UE scores (P < 0.05), whereafter they levelled off. At group level, smoothness was lower in patients who suffered a stroke compared to healthy subjects at all time points (P < 0.05). CONCLUSIONS: The present findings show that, after stroke, recovery of smoothness in a multi-joint reaching task and recovery from motor impairments are longitudinally associated and follow a similar time course. This suggests that the reduction of smoothness deficits quantified by SPARC is a proper objective reflection of recovery from motor impairment, as reflected by FM-UE, probably driven by a common underlying process of spontaneous neurological recovery early post stroke.


Asunto(s)
Trastornos Motores , Rehabilitación de Accidente Cerebrovascular , Accidente Cerebrovascular , Humanos , Masculino , Paresia/etiología , Recuperación de la Función , Accidente Cerebrovascular/complicaciones , Extremidad Superior
11.
J Neuroeng Rehabil ; 18(1): 154, 2021 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-34702281

RESUMEN

BACKGROUND: Smoothness is commonly used for measuring movement quality of the upper paretic limb during reaching tasks after stroke. Many different smoothness metrics have been used in stroke research, but a 'valid' metric has not been identified. A systematic review and subsequent rigorous analysis of smoothness metrics used in stroke research, in terms of their mathematical definitions and response to simulated perturbations, is needed to conclude whether they are valid for measuring smoothness. Our objective was to provide a recommendation for metrics that reflect smoothness after stroke based on: (1) a systematic review of smoothness metrics for reaching used in stroke research, (2) the mathematical description of the metrics, and (3) the response of metrics to simulated changes associated with smoothness deficits in the reaching profile. METHODS: The systematic review was performed by screening electronic databases using combined keyword groups Stroke, Reaching and Smoothness. Subsequently, each metric identified was assessed with mathematical criteria regarding smoothness: (a) being dimensionless, (b) being reproducible, (c) being based on rate of change of position, and (d) not being a linear transform of other smoothness metrics. The resulting metrics were tested for their response to simulated changes in reaching using models of velocity profiles with varying reaching distances and durations, harmonic disturbances, noise, and sub-movements. Two reaching tasks were simulated; reach-to-point and reach-to-grasp. The metrics that responded as expected in all simulation analyses were considered to be valid. RESULTS: The systematic review identified 32 different smoothness metrics, 17 of which were excluded based on mathematical criteria, and 13 more as they did not respond as expected in all simulation analyses. Eventually, we found that, for reach-to-point and reach-to-grasp movements, only Spectral Arc Length (SPARC) was found to be a valid metric. CONCLUSIONS: Based on this systematic review and simulation analyses, we recommend the use of SPARC as a valid smoothness metric in both reach-to-point and reach-to-grasp tasks of the upper limb after stroke. However, further research is needed to understand the time course of smoothness measured with SPARC for the upper limb early post stroke, preferably in longitudinal studies.


Asunto(s)
Rehabilitación de Accidente Cerebrovascular , Accidente Cerebrovascular , Benchmarking , Fenómenos Biomecánicos , Humanos , Movimiento , Accidente Cerebrovascular/complicaciones , Extremidad Superior
12.
Sensors (Basel) ; 21(10)2021 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-34063478

RESUMEN

Physical fatigue is a recurrent problem in running that negatively affects performance and leads to an increased risk of being injured. Identification and management of fatigue helps reducing such negative effects, but is presently commonly based on subjective fatigue measurements. Inertial sensors can record movement data continuously, allowing recording for long durations and extensive amounts of data. Here we aimed to assess if inertial measurement units (IMUs) can be used to distinguish between fatigue levels during an outdoor run with a machine learning classification algorithm trained on IMU-derived biomechanical features, and what is the optimal configuration to do so. Eight runners ran 13 laps of 400 m on an athletic track at a constant speed with 8 IMUs attached to their body (feet, tibias, thighs, pelvis, and sternum). Three segments were extracted from the run: laps 2-4 (no fatigue condition, Rating of Perceived Exertion (RPE) = 6.0 ± 0.0); laps 8-10 (mild fatigue condition, RPE = 11.7 ± 2.0); laps 11-13 (heavy fatigue condition, RPE = 14.2 ± 3.0), run directly after a fatiguing protocol (progressive increase of speed until RPE ≥ 16) that followed lap 10. A random forest classification algorithm was trained with selected features from the 400 m moving average of the IMU-derived accelerations, angular velocities, and joint angles. A leave-one-subject-out cross validation was performed to assess the optimal combination of IMU locations to detect fatigue and selected sensor configurations were considered. The left tibia was the most recurrent sensor location, resulting in accuracies ranging between 0.761 (single left tibia location) and 0.905 (all IMU locations). These findings contribute toward a balanced choice between higher accuracy and lower intrusiveness in the development of IMU-based fatigue detection devices in running.


Asunto(s)
Carrera , Aceleración , Fenómenos Biomecánicos , Pie , Aprendizaje Automático
13.
J Neuroeng Rehabil ; 17(1): 143, 2020 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-33115480

RESUMEN

BACKGROUND: Recently developed controllers for robot-assisted gait training allow for the adjustment of assistance for specific subtasks (i.e. specific joints and intervals of the gait cycle that are related to common impairments after stroke). However, not much is known about possible interactions between subtasks and a better understanding of this can help to optimize (manual or automatic) assistance tuning in the future. In this study, we assessed the effect of separately assisting three commonly impaired subtasks after stroke: foot clearance (FC, knee flexion/extension during swing), stability during stance (SS, knee flexion/extension during stance) and weight shift (WS, lateral pelvis movement). For each of the assisted subtasks, we determined the influence on the performance of the respective subtask, and possible effects on other subtasks of walking and spatiotemporal gait parameters. METHODS: The robotic assistance for the FC, SS and WS subtasks was assessed in nine mildly impaired chronic stroke survivors while walking in the LOPES II gait trainer. Seven trials were performed for each participant in a randomized order: six trials in which either 20% or 80% of assistance was provided for each of the selected subtasks, and one baseline trial where the participant did not receive subtask-specific assistance. The influence of the assistance on performances (errors compared to reference trajectories) for the assisted subtasks and other subtasks of walking as well as spatiotemporal parameters (step length, width and height, swing and stance time) was analyzed. RESULTS: Performances for the impaired subtasks (FC, SS and WS) improved significantly when assistance was applied for the respective subtask. Although WS performance improved when assisting this subtask, participants were not shifting their weight well towards the paretic leg. On a group level, not many effects on other subtasks and spatiotemporal parameters were found. Still, performance for the leading limb angle subtask improved significantly resulting in a larger step length when applying FC assistance. CONCLUSION: FC and SS assistance leads to clear improvements in performance for the respective subtask, while our WS assistance needs further improvement. As effects of the assistance were mainly confined to the assisted subtasks, tuning of FC, SS and WS can be done simultaneously. Our findings suggest that there may be no need for specific, time-intensive tuning protocols (e.g. tuning subtasks after each other) in mildly impaired stroke survivors.


Asunto(s)
Dispositivo Exoesqueleto , Robótica/instrumentación , Rehabilitación de Accidente Cerebrovascular/métodos , Caminata/fisiología , Adulto , Femenino , Trastornos Neurológicos de la Marcha/etiología , Trastornos Neurológicos de la Marcha/rehabilitación , Humanos , Masculino , Persona de Mediana Edad , Sobrevivientes
14.
Sensors (Basel) ; 20(21)2020 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-33171858

RESUMEN

As an alternative to force plates, an inertial measurement unit (IMU) at the pelvis can offer an ambulatory method for measuring total center of mass (CoM) accelerations and, thereby, the ground reaction forces (GRF) during gait. The challenge here is to estimate the 3D components of the GRF. We employ a calibration procedure and an error state extended Kalman filter based on an earlier work to estimate the instantaneous 3D GRF for different over-ground walking patterns. The GRF were then expressed in a body-centric reference frame, to enable an ambulatory setup not related to a fixed global frame. The results were validated with ForceShoesTM, and the average error in estimating instantaneous shear GRF was 5.2 ± 0.5% of body weight across different variable over-ground walking tasks. The study shows that a single pelvis IMU can measure 3D GRF in a minimal and ambulatory manner during over-ground gait.


Asunto(s)
Análisis de la Marcha/métodos , Caminata , Aceleración , Fenómenos Biomecánicos , Humanos , Pelvis
15.
Clin Rehabil ; 31(12): 1616-1624, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28523987

RESUMEN

OBJECTIVE: To study the six-month clinical effects of providing ankle-foot orthoses at different moments (early or delayed) in (sub)acute stroke; this is a follow-up to a published trial. DESIGN: Randomized controlled trial. SETTING: Rehabilitation centre. SUBJECTS: Unilateral hemiparetic stroke subjects maximal six weeks post-stroke with indication for ankle-foot orthosis use. INTERVENTIONS: Subjects were randomly assigned to early (at inclusion; week 1) or delayed provision (eight weeks later; week 9). OUTCOME MEASURES: Functional tests assessing balance and mobility were performed bi-weekly for 17 weeks and at week 26. RESULTS: In all, 33 subjects were randomized. No differences at week 26 were found between both groups for any of the outcome measures. However, results suggest that early provision leads to better outcomes in the first 11-13 weeks. Berg Balance Scale ( P = 0.006), Functional Ambulation Categories ( P = 0.033) and 6-minute walk test ( P < 0.001) showed significantly different patterns over time. Clinically relevant but statistically non-significant differences of 4-10 weeks in reaching independent walking with higher balance levels were found, favouring early provision. CONCLUSION: No six-month differences in functional outcomes of providing ankle-foot orthoses at different moments in the early rehabilitation after stroke were found. Results suggest that there is a period of 11-13 weeks in which early provision may be beneficial, possibly resulting in early independent and safe walking. However, our study was underpowered. Further research including larger numbers of subjects is warranted.


Asunto(s)
Ortesis del Pié , Rehabilitación de Accidente Cerebrovascular/métodos , Accidente Cerebrovascular/terapia , Femenino , Estudios de Seguimiento , Humanos , Masculino , Persona de Mediana Edad , Accidente Cerebrovascular/fisiopatología , Rehabilitación de Accidente Cerebrovascular/instrumentación , Factores de Tiempo
16.
Clin Rehabil ; 31(2): 207-216, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26869596

RESUMEN

OBJECTIVES: To compare user acceptance and arm and hand function changes after technology-supported training at home with conventional exercises in chronic stroke. Secondly, to investigate the relation between training duration and clinical changes. DESIGN: A randomised controlled trial. SETTING: Training at home, evaluation at research institute. SUBJECTS: Twenty chronic stroke patients with severely to mildly impaired arm and hand function. INTERVENTIONS: Participants were randomly assigned to six weeks (30 minutes per day, six days a week) of self-administered home-based arm and hand training using either a passive dynamic wrist and hand orthosis combined with computerised gaming exercises (experimental group) or prescribed conventional exercises from an exercise book (control group). MAIN MEASURES: Main outcome measures are the training duration for user acceptance and the Action Research Arm Test for arm and hand function. Secondary outcomes are the Intrinsic Motivation Inventory, Fugl-Meyer assessment, Motor Activity Log, Stroke Impact Scale and grip strength. RESULTS: The control group reported a higher training duration (189 versus 118 minutes per week, P = 0.025). Perceived motivation was positive and equal between groups ( P = 0.935). No differences in clinical outcomes over training between groups were found (P ⩾ 0.165). Changes in Box and Block Test correlated positively with training duration ( P = 0.001). CONCLUSIONS: Both interventions were accepted. An additional benefit of technology-supported arm and hand training over conventional arm and hand exercises at home was not demonstrated. Training duration in itself is a major contributor to arm and hand function improvements.


Asunto(s)
Terapia por Ejercicio/métodos , Paresia/rehabilitación , Recuperación de la Función , Accidente Cerebrovascular/fisiopatología , Juegos de Video , Anciano , Enfermedad Crónica , Femenino , Mano/fisiopatología , Humanos , Masculino , Persona de Mediana Edad , Terapia Ocupacional/métodos , Aparatos Ortopédicos , Paresia/etiología , Proyectos Piloto , Pronóstico , Rango del Movimiento Articular/fisiología , Índice de Severidad de la Enfermedad , Accidente Cerebrovascular/complicaciones , Factores de Tiempo , Resultado del Tratamiento
17.
Clin Rehabil ; 31(6): 798-808, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27390153

RESUMEN

OBJECTIVE: (1) To study the effects of providing ankle-foot orthoses in subjects with (sub)acute stroke; and (2) to study whether the point in time at which an ankle-foot orthosis is provided post-stroke (early or delayed) influences these effects. DESIGN: Randomized controlled trial. SETTING: Rehabilitation centre. SUBJECTS: Unilateral hemiparetic stroke subjects with indication for use of an ankle-foot orthosis and maximal six weeks post-stroke. INTERVENTIONS: Subjects were randomly assigned to: early provision (at inclusion; Week 1) or delayed provision (eight weeks later; Week 9). OUTCOME MEASURES: 10-metre walk test, 6-minute walk test, Timed Up and Go Test, stairs test, Functional Ambulation Categories, Berg Balance Scale, Rivermead Mobility Index and Barthel Index; assessed in Weeks 1, 3, 9 and 11. RESULTS: A total of 33 subjects were randomized (16 early, 17 delayed). Positive effects of ankle-foot orthoses were found two weeks after provision, both when provided early (significant effects on all outcomes) or delayed (Berg Balance Scale p = 0.011, Functional Ambulation Categories p = 0.008, 6-minute walk test p = 0.005, Timed Up and Go Test p = 0.028). Comparing effects after early and delayed provision showed that early provision resulted in increased levels of improvement on Berg Balance Scale (+5.1 points, p = 0.002), Barthel Index (+1.9 points, p = 0.002) and non-significant improvements on 10-metre walk test (+0.14 m/s, p = 0.093) and Timed Up and Go Test (-5.4 seconds, p = 0.087), compared with delayed provision. CONCLUSIONS: We found positive effects of providing ankle-foot orthoses in (sub)acute stroke subjects that had not used these orthoses before.


Asunto(s)
Ambulación Precoz/instrumentación , Ortesis del Pié/provisión & distribución , Trastornos Neurológicos de la Marcha/rehabilitación , Rehabilitación de Accidente Cerebrovascular/instrumentación , Accidente Cerebrovascular/diagnóstico , Enfermedad Aguda , Adulto , Anciano , Articulación del Tobillo , Enfermedad Crónica , Ambulación Precoz/métodos , Femenino , Trastornos Neurológicos de la Marcha/etiología , Humanos , Masculino , Persona de Mediana Edad , Países Bajos , Calidad de Vida , Centros de Rehabilitación , Índice de Severidad de la Enfermedad , Accidente Cerebrovascular/complicaciones , Rehabilitación de Accidente Cerebrovascular/métodos , Factores de Tiempo , Resultado del Tratamiento , Prueba de Paso/métodos
18.
J Neuroeng Rehabil ; 14(1): 80, 2017 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-28806995

RESUMEN

Clinically useful and efficient assessment of balance during standing and walking is especially challenging in patients with neurological disorders. However, rehabilitation robots could facilitate assessment procedures and improve their clinical value. We present a short overview of balance assessment in clinical practice and in posturography. Based on this overview, we evaluate the potential use of robotic tools for such assessment. The novelty and assumed main benefits of using robots for assessment are their ability to assess 'severely affected' patients by providing assistance-as-needed, as well as to provide consistent perturbations during standing and walking while measuring the patient's reactions. We provide a classification of robotic devices on three aspects relevant to their potential application for balance assessment: 1) how the device interacts with the body, 2) in what sense the device is mobile, and 3) on what surface the person stands or walks when using the device. As examples, nine types of robotic devices are described, classified and evaluated for their suitability for balance assessment. Two example cases of robotic assessments based on perturbations during walking are presented. We conclude that robotic devices are promising and can become useful and relevant tools for assessment of balance in patients with neurological disorders, both in research and in clinical use. Robotic assessment holds the promise to provide increasingly detailed assessment that allows to individually tailor rehabilitation training, which may eventually improve training effectiveness.


Asunto(s)
Enfermedades del Sistema Nervioso/diagnóstico , Modalidades de Fisioterapia/instrumentación , Equilibrio Postural , Robótica/métodos , Caminata , Humanos , Masculino
19.
J Neuroeng Rehabil ; 14(1): 125, 2017 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-29197402

RESUMEN

BACKGROUND: During gait training, physical therapists continuously supervise stroke survivors and provide physical support to their pelvis when they judge that the patient is unable to keep his balance. This paper is the first in providing quantitative data about the corrective forces that therapists use during gait training. It is assumed that changes in the acceleration of a patient's COM are a good predictor for therapeutic balance assistance during the training sessions Therefore, this paper provides a method that predicts the timing of therapeutic balance assistance, based on acceleration data of the sacrum. METHODS: Eight sub-acute stroke survivors and seven therapists were included in this study. Patients were asked to perform straight line walking as well as slalom walking in a conventional training setting. Acceleration of the sacrum was captured by an Inertial Magnetic Measurement Unit. Balance-assisting corrective forces applied by the therapist were collected from two force sensors positioned on both sides of the patient's hips. Measures to characterize the therapeutic balance assistance were the amount of force, duration, impulse and the anatomical plane in which the assistance took place. Based on the acceleration data of the sacrum, an algorithm was developed to predict therapeutic balance assistance. To validate the developed algorithm, the predicted events of balance assistance by the algorithm were compared with the actual provided therapeutic assistance. RESULTS: The algorithm was able to predict the actual therapeutic assistance with a Positive Predictive Value of 87% and a True Positive Rate of 81%. Assistance mainly took place over the medio-lateral axis and corrective forces of about 2% of the patient's body weight (15.9 N (11), median (IQR)) were provided by therapists in this plane. Median duration of balance assistance was 1.1 s (0.6) (median (IQR)) and median impulse was 9.4Ns (8.2) (median (IQR)). Although therapists were specifically instructed to aim for the force sensors on the iliac crest, a different contact location was reported in 22% of the corrections. CONCLUSIONS: This paper presents insights into the behavior of therapists regarding their manual physical assistance during gait training. A quantitative dataset was presented, representing therapeutic balance-assisting force characteristics. Furthermore, an algorithm was developed that predicts events at which therapeutic balance assistance was provided. Prediction scores remain high when different therapists and patients were analyzed with the same algorithm settings. Both the quantitative dataset and the developed algorithm can serve as technical input in the development of (robot-controlled) balance supportive devices.


Asunto(s)
Trastornos Neurológicos de la Marcha/rehabilitación , Marcha , Fisioterapeutas , Equilibrio Postural , Rehabilitación de Accidente Cerebrovascular/métodos , Aceleración , Anciano , Algoritmos , Terapia por Ejercicio , Femenino , Cadera/fisiología , Humanos , Masculino , Persona de Mediana Edad , Valor Predictivo de las Pruebas , Reproducibilidad de los Resultados , Sacro/fisiología , Sobrevivientes , Caminata
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA