Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Nature ; 542(7639): 96-100, 2017 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-28117439

RESUMEN

When faced with threat, the survival of an organism is contingent upon the selection of appropriate active or passive behavioural responses. Freezing is an evolutionarily conserved passive fear response that has been used extensively to study the neuronal mechanisms of fear and fear conditioning in rodents. However, rodents also exhibit active responses such as flight under natural conditions. The central amygdala (CEA) is a forebrain structure vital for the acquisition and expression of conditioned fear responses, and the role of specific neuronal sub-populations of the CEA in freezing behaviour is well-established. Whether the CEA is also involved in flight behaviour, and how neuronal circuits for active and passive fear behaviour interact within the CEA, are not yet understood. Here, using in vivo optogenetics and extracellular recordings of identified cell types in a behavioural model in which mice switch between conditioned freezing and flight, we show that active and passive fear responses are mediated by distinct and mutually inhibitory CEA neurons. Cells expressing corticotropin-releasing factor (CRF+) mediate conditioned flight, and activation of somatostatin-positive (SOM+) neurons initiates passive freezing behaviour. Moreover, we find that the balance between conditioned flight and freezing behaviour is regulated by means of local inhibitory connections between CRF+ and SOM+ neurons, indicating that the selection of appropriate behavioural responses to threat is based on competitive interactions between two defined populations of inhibitory neurons, a circuit motif allowing for rapid and flexible action selection.


Asunto(s)
Reacción de Fuga/fisiología , Miedo/fisiología , Miedo/psicología , Reacción Cataléptica de Congelación/fisiología , Inhibición Neural , Neuronas/fisiología , Animales , Núcleo Amigdalino Central/citología , Núcleo Amigdalino Central/fisiología , Hormona Liberadora de Corticotropina/metabolismo , Locomoción/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Modelos Neurológicos , Vías Nerviosas , Optogenética , Somatostatina/metabolismo
2.
Stem Cells ; 38(6): 741-755, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32129551

RESUMEN

Cardiac progenitor formation is one of the earliest committed steps of human cardiogenesis and requires the cooperation of multiple gene sets governed by developmental signaling cascades. To determine the key regulators for cardiac progenitor formation, we have developed a two-stage genome-wide CRISPR-knockout screen. We mimicked the progenitor formation process by differentiating human pluripotent stem cells (hPSCs) into cardiomyocytes, monitored by two distinct stage markers of early cardiac mesodermal formation and commitment to a multipotent heart progenitor cell fate: MESP1 and ISL1, respectively. From the screen output, we compiled a list of 15 candidate genes. After validating seven of them, we identified ZIC2 as an essential gene for cardiac progenitor formation. ZIC2 is known as a master regulator of neurogenesis. hPSCs with ZIC2 mutated still express pluripotency markers. However, their ability to differentiate into cardiomyocytes was greatly attenuated. RNA-Seq profiling of the ZIC2-mutant cells revealed that the mutants switched their cell fate alternatively to the noncardiac cell lineage. Further, single cell RNA-seq analysis showed the ZIC2 mutants affected the apelin receptor-related signaling pathway during mesoderm formation. Our results provide a new link between ZIC2 and human cardiogenesis and document the potential power of a genome-wide unbiased CRISPR-knockout screen to identify the key steps in human mesoderm precursor cell- and heart progenitor cell-fate determination during in vitro hPSC cardiogenesis.


Asunto(s)
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Estudio de Asociación del Genoma Completo/métodos , Corazón/fisiopatología , Mesodermo/metabolismo , Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismo , Animales , Diferenciación Celular , Modelos Animales de Enfermedad , Humanos , Ratones
3.
Mol Ther ; 26(7): 1644-1659, 2018 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-29606507

RESUMEN

The generation of human pluripotent stem cell (hPSC)-derived ventricular progenitors and their assembly into a 3-dimensional in vivo functional ventricular heart patch has remained an elusive goal. Herein, we report the generation of an enriched pool of hPSC-derived ventricular progenitors (HVPs), which can expand, differentiate, self-assemble, and mature into a functional ventricular patch in vivo without the aid of any gel or matrix. We documented a specific temporal window, in which the HVPs will engraft in vivo. On day 6 of differentiation, HVPs were enriched by depleting cells positive for pluripotency marker TRA-1-60 with magnetic-activated cell sorting (MACS), and 3 million sorted cells were sub-capsularly transplanted onto kidneys of NSG mice where, after 2 months, they formed a 7 mm × 3 mm × 4 mm myocardial patch resembling the ventricular wall. The graft acquired several features of maturation: expression of ventricular marker (MLC2v), desmosomes, appearance of T-tubule-like structures, and electrophysiological action potential signature consistent with maturation, all this in a non-cardiac environment. We further demonstrated that HVPs transplanted into un-injured hearts of NSG mice remain viable for up to 8 months. Moreover, transplantation of 2 million HVPs largely preserved myocardial contractile function following myocardial infarction. Taken together, our study reaffirms the promising idea of using progenitor cells for regenerative therapy.


Asunto(s)
Ventrículos Cardíacos/metabolismo , Ventrículos Cardíacos/fisiopatología , Proteínas con Homeodominio LIM/metabolismo , Infarto del Miocardio/metabolismo , Infarto del Miocardio/fisiopatología , Factores de Transcripción/metabolismo , Animales , Diferenciación Celular/fisiología , Separación Celular/métodos , Células Cultivadas , Humanos , Masculino , Ratones , Ratones Endogámicos NOD , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/fisiología , Células Madre Pluripotentes/metabolismo , Células Madre Pluripotentes/fisiología
5.
Dev Cell ; 48(4): 475-490.e7, 2019 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-30713072

RESUMEN

The morphogenetic process of mammalian cardiac development is complex and highly regulated spatiotemporally by multipotent cardiac stem/progenitor cells (CPCs). Mouse studies have been informative for understanding mammalian cardiogenesis; however, similar insights have been poorly established in humans. Here, we report comprehensive gene expression profiles of human cardiac derivatives from multipotent CPCs to intermediates and mature cardiac cells by population and single-cell RNA-seq using human embryonic stem cell-derived and embryonic/fetal heart-derived cardiac cells micro-dissected from specific heart compartments. Importantly, we discover a uniquely human subset of cono-ventricular region-specific CPCs, marked by LGR5. At 4 to 5 weeks of fetal age, the LGR5+ population appears to emerge specifically in the proximal outflow tract of human embryonic hearts and thereafter promotes cardiac development and alignment through expansion of the ISL1+TNNT2+ intermediates. The current study contributes to a deeper understanding of human cardiogenesis, which may uncover the putative origins of certain human congenital cardiac malformations.


Asunto(s)
Diferenciación Celular/fisiología , Miocitos Cardíacos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Análisis de la Célula Individual , Animales , Diferenciación Celular/genética , Línea Celular , Células Cultivadas , Células Madre Embrionarias/metabolismo , Células Endoteliales/metabolismo , Ventrículos Cardíacos/metabolismo , Células Madre Embrionarias Humanas/metabolismo , Humanos , Proteínas con Homeodominio LIM/genética , Ratones Endogámicos C57BL , Células Madre Multipotentes , Miocardio/metabolismo , Organogénesis , Análisis de la Célula Individual/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA