Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Physiol Plant ; 149(3): 329-39, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23414066

RESUMEN

Plants have evolved to develop an efficient system of boron uptake and transport using a range of efflux carriers named BOR proteins. In this work we isolated and characterized a boron transporter of citrus (Citrus macrophylla), which was named CmBOR1 for its high homology to AtBOR1. CmBOR1 has 4403 bp and 12 exons. Its coding region has 2145 bp and encodes for a protein of 714 amino acids. CmBOR1 possesses the molecular features of BORs such as an anion exchanger domain and the presence of 10 transmembrane domains. Functional analysis in yeast indicated that CmBOR1 has an efflux boron transporter activity, and transformants have increased tolerance to excess boron. CmBOR1 is expressed in leaves, stem and flowers and shows the greatest accumulation in roots. The transcript accumulation was significantly increased under boron deficiency conditions in shoots. In contrast, the accumulation of the transcript did not change in boron toxicity conditions. Finally, we observed that constitutive expression of CmBOR1 was able to increase tolerance to boron deficiency conditions in Arabidopsis thaliana, suggesting that CmBOR1 is a xylem loading boron transporter. Based on these results, it was determined that CmBOR1 encodes a boric acid/borate transporter involved in tolerance to boron deficiency in plants.


Asunto(s)
Boro/metabolismo , Citrus/fisiología , Proteínas de Transporte de Membrana/fisiología , Proteínas de Plantas/metabolismo , Secuencia de Aminoácidos , Citrus/genética , Prueba de Complementación Genética , Proteínas de Transporte de Membrana/genética , Datos de Secuencia Molecular , Proteínas de Plantas/genética , Análisis de Secuencia de ADN
2.
BMC Plant Biol ; 11: 142, 2011 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-22018045

RESUMEN

BACKGROUND: Under drought, plants accumulate the signaling hormone abscisic acid (ABA), which induces the rapid closure of stomatal pores to prevent water loss. This event is trigged by a series of signals produced inside guard cells which finally reduce their turgor. Many of these events are tightly regulated at the transcriptional level, including the control exerted by MYB proteins. In a previous study, while identifying the grapevine R2R3 MYB family, two closely related genes, VvMYB30 and VvMYB60 were found with high similarity to AtMYB60, an Arabidopsis guard cell-related drought responsive gene. RESULTS: Promoter-GUS transcriptional fusion assays showed that expression of VvMYB60 was restricted to stomatal guard cells and was attenuated in response to ABA. Unlike VvMYB30, VvMYB60 was able to complement the loss-of-function atmyb60-1 mutant, indicating that VvMYB60 is the only true ortholog of AtMYB60 in the grape genome. In addition, VvMYB60 was differentially regulated during development of grape organs and in response to ABA and drought-related stress conditions. CONCLUSIONS: These results show that VvMYB60 modulates physiological responses in guard cells, leading to the possibility of engineering stomatal conductance in grapevine, reducing water loss and helping this species to tolerate drought under extreme climatic conditions.


Asunto(s)
Ácido Abscísico/farmacología , Proteínas de Plantas/metabolismo , Estomas de Plantas/metabolismo , Factores de Transcripción/metabolismo , Vitis/genética , Secuencia de Aminoácidos , Arabidopsis/genética , Arabidopsis/metabolismo , Sequías , Regulación de la Expresión Génica de las Plantas , Datos de Secuencia Molecular , Ósmosis , Filogenia , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Regiones Promotoras Genéticas , Estrés Fisiológico , Factores de Transcripción/genética , Transcriptoma , Vitis/metabolismo , Vitis/fisiología , Agua/fisiología
3.
J Exp Bot ; 61(4): 1215-24, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20118203

RESUMEN

Embryogenesis is a critical stage during the plant life cycle in which a unicellular zygote develops into a multicellular organism. Co-ordinated gene expression is thus necessary for proper embryo development. Polycomb and Trithorax group genes are members of evolutionarily conserved machinery that maintains the correct expression patterns of key developmental regulators by repressing and activating gene transcription. TRAUCO (TRO), a gene homologous to the Trithorax group of genes that can functionally complement a BRE2P yeast mutant, has been identified in Arabidopsis thaliana. It is demonstrated that TRO is a nuclear gene product expressed during embryogenesis, and loss of TRO function leads to impaired early embryo development. Embryos that arrested at the globular stage in the tro-1 mutant allele were fully rescued by a TRO expression clone, a demonstration that the tro-1 mutation is a true loss-of-function in TRO. Our data have established that TRO is the first trithorax-group gene homologue in plants that is required for early embryogenesis.


Asunto(s)
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/embriología , Regulación del Desarrollo de la Expresión Génica , Arabidopsis/genética , Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Mutación
4.
Mol Cells ; 19(3): 418-27, 2005 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-15995360

RESUMEN

When inoculated into sensitive tobacco Xanthi-nn plants, the crucifer and garlic-infecting Tobacco mosaic virus (TMV-Cg) induces local necrotic lesions that resemble those seen in the hypersensitive response (HR) of resistant tobacco plants. However, unlike these, tobacco Xanthi-nn plants do not become resistant to infection and the virus spreads systemically causing a severe disease characterized by necrotic lesions throughout the plant. To identify the viral protein that elicits this necrotic response, we used a set of hybrid viruses constructed by combination of TMV-Cg and the tobacco mosaic virus strain U1 (TMV-U1). In this study we present evidence that the coat protein of TMV-Cg (CPCg) is the elicitor of the necrotic response in tobacco Xanthi-nn plants. Local and systemic necrotic lesions induced by TMV-Cg and by the hybrid U1-CPCg -that carries CPCg in a TMV-U1 context- are characterized by cell death and by the presence of autoflorescent phenolic compounds and H2O2, just like the HR lesions. In addition, defense-related genes and detoxifying genes are induced in tobacco Xanthi-nn plants after TMV-Cg and U1-CPCg inoculation. We postulate that in our system, CPCg is recognized by sensitive tobacco plants that mount an incomplete defense response. We call this an HR-like since it is not enough to induce plant resistance.


Asunto(s)
Proteínas de la Cápside/inmunología , Nicotiana/inmunología , Nicotiana/virología , Virus del Mosaico del Tabaco/inmunología , Genes de Plantas , Necrosis , Virus del Mosaico del Tabaco/química , Virus del Mosaico del Tabaco/genética
5.
PLoS One ; 9(10): e110372, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25330210

RESUMEN

The RESPONSIVE TO DEHYDRATION 22 (RD22) gene is a molecular link between abscisic acid (ABA) signalling and abiotic stress responses. Its expression has been used as a reliable ABA early response marker. In Arabidopsis, the single copy RD22 gene possesses a BURP domain also located at the C-terminus of USP embryonic proteins and the beta subunit of polygalacturonases. In grapevine, a RD22 gene has been identified but putative paralogs are also found in the grape genome, possibly forming a large RD22 family in this species. In this work, we searched for annotations containing BURP domains in the Vitis vinifera genome. Nineteen proteins were defined by a comparative analysis between the two genome predictions and RNA-Seq data. These sequences were compared to other plant BURPs identified in previous genome surveys allowing us to reconceive group classifications based on phylogenetic relationships and protein motif occurrence. We observed a lineage-specific evolution of the RD22 family, with the biggest expansion in grapevine and poplar. In contrast, rice, sorghum and maize presented highly expanded monocot-specific groups. The Vitis RD22 group may have expanded from segmental duplications as most of its members are confined to a region in chromosome 4. The inspection of transcriptomic data revealed variable expression of BURP genes in vegetative and reproductive organs. Many genes were induced in specific tissues or by abiotic and biotic stresses. Three RD22 genes were further studied showing that they responded oppositely to ABA and to stress conditions. Our results show that the inclusion of RNA-Seq data is essential while describing gene families and improving gene annotations. Robust phylogenetic analyses including all BURP members from other sequenced species helped us redefine previous relationships that were erroneously established. This work provides additional evidence for RD22 genes serving as marker genes for different organs or stresses in grapevine.


Asunto(s)
Ácido Abscísico/metabolismo , Frutas/genética , Estrés Fisiológico/genética , Vitis/genética , Secuencia de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/biosíntesis , Proteínas de Arabidopsis/genética , Deshidratación/genética , Frutas/crecimiento & desarrollo , Frutas/metabolismo , Regulación de la Expresión Génica de las Plantas , Familia de Multigenes , Filogenia , Análisis de Secuencia de ARN , Vitis/crecimiento & desarrollo , Vitis/metabolismo
6.
J Gen Virol ; 89(Pt 3): 809-817, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18272773

RESUMEN

The tobamovirus TMV-Cg induces an HR-like response in Nicotiana tabacum cv. Xanthi nn sensitive plants lacking the N or N' resistance genes. This response has been characterized by the appearance of necrotic lesions in the inoculated leaf and viral systemic spread, although the defence pathways are activated in the plant. A previous study demonstrated that the coat protein (CP) of TMV-Cg (CPCg) was the elicitor of this HR-like response. We examined the influence of four specific amino acid substitutions on the structure of CPCg, as well as on the development of the host response. To gain insights into the structural implications of these substitutions, a set of molecular dynamic experiments was performed using comparative models of wild-type and mutant CPCg as well as the CP of the U1 strain of TMV (CPU1), which is not recognized by the plants. A P21L mutation produces severe changes in the three-dimensional structure of CPCg and is more unstable when this subunit is laterally associated in silico. This result may explain the observed incapacity of this mutant to assemble virions. Two other CPCg mutations (R46G and S54K) overcome recognition by the plant and do not induce an HR-like response. A double CPCg mutant P21L-S54K recovered its capacity to form virions and to induce an HR-like response. Our results suggest that the structural integrity of the CP proteins is important for triggering the HR-like response.


Asunto(s)
Proteínas de la Cápside , Nicotiana/inmunología , Virus del Mosaico del Tabaco/patogenicidad , Sustitución de Aminoácidos , Proteínas de la Cápside/química , Proteínas de la Cápside/genética , Proteínas de la Cápside/metabolismo , Modelos Moleculares , Necrosis , Hojas de la Planta/inmunología , Hojas de la Planta/virología , Electricidad Estática , Relación Estructura-Actividad , Nicotiana/virología , Virus del Mosaico del Tabaco/química , Virus del Mosaico del Tabaco/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA