Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Plant J ; 113(6): 1330-1347, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36658761

RESUMEN

The enzyme glutamine synthetase (EC 6.3.1.2) is mainly responsible for the incorporation of inorganic nitrogen into organic molecules in plants. In the present work, a pine (Pinus pinaster) GS1 (PpGS1b.2) gene was identified, showing a high sequence identity with the GS1b.1 gene previously characterized in conifers. Phylogenetic analysis revealed that the presence of PpGS1b.2 is restricted to the genera Pinus and Picea and is not found in other conifers. Gene expression data suggest a putative role of PpGS1b.2 in plant development, similar to other GS1b genes from angiosperms, suggesting evolutionary convergence. The characterization of GS1b.1 and GS1b.2 at the structural, physicochemical, and kinetic levels has shown differences even though they have high sequence homology. GS1b.2 had a lower optimum pH (6 vs. 6.5) and was less thermally stable than GS1b.1. GS1b.2 exhibited positive cooperativity for glutamate and substrate inhibition for ammonium. However, GS1b.1 exhibited substrate inhibition behavior for glutamate and ATP. Alterations in the kinetic characteristics produced by site-directed mutagenesis carried out in this work strongly suggest an implication of amino acids at positions 264 and 267 in the active center of pine GS1b.1 and GS1b.2 being involved in affinity toward ammonium. Therefore, the amino acid differences between GS1b.1 and GS1b.2 would support the functioning of both enzymes to meet distinct plant needs.


Asunto(s)
Compuestos de Amonio , Pinus , Glutamato-Amoníaco Ligasa/genética , Glutamato-Amoníaco Ligasa/metabolismo , Filogenia , Pinus/genética , Ácido Glutámico/metabolismo , Compuestos de Amonio/metabolismo
2.
Plant J ; 110(4): 946-960, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35199893

RESUMEN

Glutamine synthetase (GS) is a key enzyme responsible for the incorporation of inorganic nitrogen in the form of ammonium into the amino acid glutamine. In plants, two groups of functional GS enzymes are found: eubacterial GSIIb (GLN2) and eukaryotic GSIIe (GLN1/GS). Only GLN1/GS genes are found in vascular plants, which suggests that they are involved in the final adaptation of plants to terrestrial life. The present phylogenetic study reclassifies the different GS genes of seed plants into three clusters: GS1a, GS1b and GS2. The presence of genes encoding GS2 has been expanded to Cycadopsida gymnosperms, which suggests the origin of this gene in a common ancestor of Cycadopsida, Ginkgoopsida and angiosperms. GS1a genes have been identified in all gymnosperms, basal angiosperms and some Magnoliidae species. Previous studies in conifers and the gene expression profiles obtained in ginkgo and magnolia in the present work could explain the absence of GS1a in more recent angiosperm species (e.g. monocots and eudicots) as a result of the redundant roles of GS1a and GS2 in photosynthetic cells. Altogether, the results provide a better understanding of the evolution of plant GS isoenzymes and their physiological roles, which is valuable for improving crop nitrogen use efficiency and productivity. This new view of GS evolution in plants, including a new cytosolic GS group (GS1a), has important functional implications in the context of plant metabolism adaptation to global changes.


Asunto(s)
Glutamato-Amoníaco Ligasa , Tracheophyta , Cycadopsida/genética , Cycadopsida/metabolismo , Glutamato-Amoníaco Ligasa/genética , Glutamato-Amoníaco Ligasa/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , Nitrógeno/metabolismo , Filogenia , Tracheophyta/metabolismo
3.
New Phytol ; 234(5): 1559-1565, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35279841

RESUMEN

Agriculture faces the considerable challenge of having to adapt to a progressively changing climate (including the increase in CO2 levels and temperatures); environmental impact must be reduced while at the same time crop yields need to be maintained or increased to ensure food security. Under this scenario, increasing plants' nitrogen (N) use efficiency and minimizing the energy losses associated with photorespiration are two goals of crop breeding that are long sought after. The plastidic glutamine synthetase (GS2) enzyme stands at the crossroads of N assimilation and photorespiration, and is therefore a key candidate for the improvement of crop performance. The GS2 enzyme has long been considered essential for angiosperm survival under photorespiratory conditions. Surprisingly, in Arabidopsis GS2 is not essential for plant survival, and its absence confers tolerance towards ammonium stress, which is in conflict with the idea that NH4+ accumulation is one of the main causes of ammonium stress. Altogether, it appears that the 'textbook' view of this enzyme must be revisited, especially regarding the degree to which it is essential for plant growth under photorespiratory conditions, and the role of NH4+ assimilation during ammonium stress. In this article we open the debate on whether more or less GS2 is a desirable trait for plant productivity.


Asunto(s)
Compuestos de Amonio , Arabidopsis , Tracheophyta , Arabidopsis/genética , Cycadopsida , Glutamato-Amoníaco Ligasa/genética , Nitrógeno , Fitomejoramiento , Plastidios
4.
Plant Cell Environ ; 45(3): 915-935, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34724238

RESUMEN

Ammonium is a prominent source of inorganic nitrogen for plant nutrition, but excessive amounts can be toxic for many species. However, most conifers are tolerant to ammonium, a relevant physiological feature of this ancient evolutionary lineage. For a better understanding of the molecular basis of this trait, ammonium-induced changes in the transcriptome of maritime pine (Pinus pinaster Ait.) root apex have been determined by laser capture microdissection and RNA sequencing. Ammonium promoted changes in the transcriptional profiles of multiple transcription factors, such as SHORT-ROOT, and phytohormone-related transcripts, such as ACO, involved in the development of the root meristem. Nano-PALDI-MSI and transcriptomic analyses showed that the distributions of IAA and CKs were altered in the root apex in response to ammonium nutrition. Taken together, the data suggest that this early response is involved in the increased lateral root branching and principal root growth, which characterize the long-term response to ammonium supply in pine. All these results suggest that ammonium induces changes in the root system architecture through the IAA-CK-ET phytohormone crosstalk and transcriptional regulation.


Asunto(s)
Compuestos de Amonio , Pinus , Compuestos de Amonio/metabolismo , Pinus/genética , Pinus/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Raíces de Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
5.
Int J Mol Sci ; 23(16)2022 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-36012612

RESUMEN

Spanish fir (Abies pinsapo Boiss.) is an endemic, endangered tree that has been scarcely investigated at the molecular level. In this work, the transcriptome of Spanish fir was assembled, providing a large catalog of expressed genes (22,769), within which a high proportion were full-length transcripts (12,545). This resource is valuable for functional genomics studies and genome annotation in this relict conifer species. Two intraspecific variations of A. pinsapo can be found within its largest population at the Sierra de las Nieves National Park: one with standard green needles and another with bluish-green needles. To elucidate the causes of both phenotypes, we studied different physiological and molecular markers and transcriptome profiles in the needles. "Green" trees showed higher electron transport efficiency and enhanced levels of chlorophyll, protein, and total nitrogen in the needles. In contrast, needles from "bluish" trees exhibited higher contents of carotenoids and cellulose. These results agreed with the differential transcriptomic profiles, suggesting an imbalance in the nitrogen status of "bluish" trees. Additionally, gene expression analyses suggested that these differences could be associated with different epigenomic profiles. Taken together, the reported data provide new transcriptome resources and a better understanding of the natural variation in this tree species, which can help improve guidelines for its conservation and the implementation of adaptive management strategies under climatic change.


Asunto(s)
Abies , Abies/genética , Cambio Climático , Perfilación de la Expresión Génica , Nitrógeno/metabolismo , Transcriptoma/genética , Árboles/genética
6.
Plant Cell ; 29(5): 919-943, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28396554

RESUMEN

A combined metabolomic, biochemical, fluxomic, and metabolic modeling approach was developed using 19 genetically distant maize (Zea mays) lines from Europe and America. Considerable differences were detected between the lines when leaf metabolic profiles and activities of the main enzymes involved in primary metabolism were compared. During grain filling, the leaf metabolic composition appeared to be a reliable marker, allowing a classification matching the genetic diversity of the lines. During the same period, there was a significant correlation between the genetic distance of the lines and the activities of enzymes involved in carbon metabolism, notably glycolysis. Although large differences were observed in terms of leaf metabolic fluxes, these variations were not tightly linked to the genome structure of the lines. Both correlation studies and metabolic network analyses allowed the description of a maize ideotype with a high grain yield potential. Such an ideotype is characterized by low accumulation of soluble amino acids and carbohydrates in the leaves and high activity of enzymes involved in the C4 photosynthetic pathway and in the biosynthesis of amino acids derived from glutamate. Chlorogenates appear to be important markers that can be used to select for maize lines that produce larger kernels.


Asunto(s)
Zea mays/crecimiento & desarrollo , Zea mays/metabolismo , Carbono/metabolismo , Variación Genética/genética , Variación Genética/fisiología , Metabolómica , Fotosíntesis/genética , Fotosíntesis/fisiología , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Zea mays/genética
7.
Plant J ; 91(6): 1064-1087, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28635135

RESUMEN

Conifers dominate vast regions of the Northern hemisphere. They are the main source of raw materials for timber industry as well as a wide range of biomaterials. Despite their inherent difficulties as experimental models for classical plant biology research, the technological advances in genomics research are enabling fundamental studies on these plants. The use of laser capture microdissection followed by transcriptomic analysis is a powerful tool for unravelling the molecular and functional organization of conifer tissues and specialized cells. In the present work, 14 different tissues from 1-month-old maritime pine (Pinus pinaster) seedlings have been isolated and their transcriptomes analysed. The results increased the sequence information and number of full-length transcripts from a previous reference transcriptome and added 39 841 new transcripts. In total, 2376 transcripts were ubiquitously expressed in all of the examined tissues. These transcripts could be considered the core 'housekeeping genes' in pine. The genes have been clustered in function to their expression profiles. This analysis reduced the number of profiles to 38, most of these defined by their expression in a unique tissue that is much higher than in the other tissues. The expression and localization data are accessible at ConGenIE.org (http://v22.popgenie.org/microdisection/). This study presents an overview of the gene expression distribution in different pine tissues, specifically highlighting the relationships between tissue gene expression and function. This transcriptome atlas is a valuable resource for functional genomics research in conifers.


Asunto(s)
Bases de Datos Genéticas , Genómica , Pinus/genética , Plantones/genética , Transcriptoma , Perfilación de la Expresión Génica , Captura por Microdisección con Láser , Especificidad de Órganos
8.
Plant Biotechnol J ; 16(5): 1094-1104, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29055073

RESUMEN

The transcriptional regulation of phenylalanine metabolism is particularly important in conifers, long-lived species that use large amounts of carbon in wood. Here, we show that the Pinus pinaster transcription factor, PpNAC1, is a main regulator of phenylalanine biosynthesis and utilization. A phylogenetic analysis classified PpNAC1 in the NST proteins group and was selected for functional characterization. PpNAC1 is predominantly expressed in the secondary xylem and compression wood of adult trees. Silencing of PpNAC1 in P. pinaster results in the alteration of stem vascular radial patterning and the down-regulation of several genes associated with cell wall biogenesis and secondary metabolism. Furthermore, transactivation and EMSA analyses showed that PpNAC1 is able to activate its own expression and PpMyb4 promoter, while PpMyb4 is able to activate PpMyb8, a transcriptional regulator of phenylalanine and lignin biosynthesis in maritime pine. Together, these results suggest that PpNAC1 is a functional ortholog of the ArabidopsisSND1 and NST1 genes and support the idea that key regulators governing secondary cell wall formation could be conserved between gymnosperms and angiosperms. Understanding the molecular switches controlling wood formation is of paramount importance for fundamental tree biology and paves the way for applications in conifer biotechnology.


Asunto(s)
Fenilalanina/metabolismo , Pinus/genética , Factores de Transcripción/metabolismo , Pared Celular/metabolismo , Lignina/metabolismo , Pinus/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regiones Promotoras Genéticas/genética , Factores de Transcripción/genética , Madera/genética , Madera/metabolismo , Xilema/genética , Xilema/metabolismo
9.
J Exp Bot ; 68(10): 2489-2500, 2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-28369488

RESUMEN

Nitrogen (N) is frequently a limiting factor for tree growth and development. Because N availability is extremely low in forest soils, trees have evolved mechanisms to acquire and transport this essential nutrient along with biotic interactions to guarantee its strict economy. Here we review recent advances in the molecular basis of tree N nutrition. The molecular characteristics, regulation, and biological significance of membrane proteins involved in the uptake and transport of N are addressed. The regulation of N uptake and transport in mycorrhized roots and transcriptome-wide studies of N nutrition are also outlined. Finally, several areas of future research are suggested.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Proteínas de la Membrana/genética , Nitrógeno/metabolismo , Proteínas de Plantas/genética , Árboles/genética , Transporte Biológico , Proteínas de la Membrana/metabolismo , Micorrizas/metabolismo , Proteínas de Plantas/metabolismo , Transcriptoma , Árboles/metabolismo
10.
BMC Genomics ; 17: 148, 2016 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-26922242

RESUMEN

BACKGROUND: In the era of DNA throughput sequencing, assembling and understanding gymnosperm mega-genomes remains a challenge. Although drafts of three conifer genomes have recently been published, this number is too low to understand the full complexity of conifer genomes. Using techniques focused on specific genes, gene models can be established that can aid in the assembly of gene-rich regions, and this information can be used to compare genomes and understand functional evolution. RESULTS: In this study, gene capture technology combined with BAC isolation and sequencing was used as an experimental approach to establish de novo gene structures without a reference genome. Probes were designed for 866 maritime pine transcripts to sequence genes captured from genomic DNA. The gene models were constructed using GeneAssembler, a new bioinformatic pipeline, which reconstructed over 82% of the gene structures, and a high proportion (85%) of the captured gene models contained sequences from the promoter regulatory region. In a parallel experiment, the P. pinaster BAC library was screened to isolate clones containing genes whose cDNA sequence were already available. BAC clones containing the asparagine synthetase, sucrose synthase and xyloglucan endotransglycosylase gene sequences were isolated and used in this study. The gene models derived from the gene capture approach were compared with the genomic sequences derived from the BAC clones. This combined approach is a particularly efficient way to capture the genomic structures of gene families with a small number of members. CONCLUSIONS: The experimental approach used in this study is a valuable combined technique to study genomic gene structures in species for which a reference genome is unavailable. It can be used to establish exon/intron boundaries in unknown gene structures, to reconstruct incomplete genes and to obtain promoter sequences that can be used for transcriptional studies. A bioinformatics algorithm (GeneAssembler) is also provided as a Ruby gem for this class of analyses.


Asunto(s)
Genoma de Planta , Modelos Genéticos , Pinus/genética , Cromosomas Artificiales Bacterianos , ADN de Plantas/genética , Exones , Biblioteca de Genes , Genómica/métodos , Intrones , Análisis de Secuencia de ADN
11.
Plant Biotechnol J ; 14(1): 299-312, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25923308

RESUMEN

The utilization of high amounts of nitrate fertilizers for crop yield leads to nitrate pollution of ground and surface waters. In this study, we report the assimilation and utilization of nitrate luxuriant levels, 20 times more than the highest N fertilizer application in Europe, by transgenic poplars overexpressing a cytosolic glutamine synthetase (GS1). In comparison with the wild-type controls, transgenic plants grown under high N levels exhibited increased biomass (171.6%) and accumulated higher levels of proteins, chlorophylls and total sugars such as glucose, fructose and sucrose. These plants also exhibited greater nitrogen-use efficiency particularly in young leaves, suggesting that they are able to translocate most of the resources to the above-ground part of the plant to produce biomass. The transgenic poplar transcriptome was greatly affected in response to N availability with 1237 genes differentially regulated in high N, while only 632 genes were differentially expressed in untransformed plants. Many of these genes are essential in the adaptation and response against N excess and include those involved in photosynthesis, cell wall formation and phenylpropanoid biosynthesis. Cellulose production in the transgenic plants was fivefold higher than in control plants, indicating that transgenic poplars represent a potential feedstock for applications in bioenergy. In conclusion, our results show that GS transgenic poplars can be used not only for improving growth and biomass production but also as an important resource for potential phytoremediation of nitrate pollution.


Asunto(s)
Biocombustibles , Nitratos/metabolismo , Populus/metabolismo , Árboles/metabolismo , Biodegradación Ambiental/efectos de los fármacos , Biomasa , Metabolismo de los Hidratos de Carbono/efectos de los fármacos , Metabolismo de los Hidratos de Carbono/genética , Carbono/metabolismo , Clorofila/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Glutamato-Amoníaco Ligasa/metabolismo , Lignina/metabolismo , Nitrógeno/metabolismo , Nitrógeno/farmacología , Fenotipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Populus/efectos de los fármacos , Populus/genética , Populus/crecimiento & desarrollo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reproducibilidad de los Resultados , Solubilidad , Transcriptoma/genética , Árboles/efectos de los fármacos , Árboles/genética , Árboles/crecimiento & desarrollo
12.
BMC Genomics ; 16: 909, 2015 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-26545587

RESUMEN

BACKGROUND: Maritime pine (Pinus pinaster Aiton) grows in a range of different climates in the southwestern Mediterranean region and the existence of a variety of latitudinal ecotypes or provenances is well established. In this study, we have conducted a deep analysis of the transcriptome in needles from two P. pinaster provenances, Leiria (Portugal) and Tamrabta (Morocco), which were grown in northern Spain under the same conditions. RESULTS: An oligonucleotide microarray (PINARRAY3) and RNA-Seq were used for whole-transcriptome analyses, and we found that 90.95% of the data were concordant between the two platforms. Furthermore, the two methods identified very similar percentages of differentially expressed genes with values of 5.5% for PINARRAY3 and 5.7% for RNA-Seq. In total, 6,023 transcripts were shared and 88 differentially expressed genes overlapped in the two platforms. Among the differentially expressed genes, all transport related genes except aquaporins were expressed at higher levels in Tamrabta than in Leiria. In contrast, genes involved in secondary metabolism were expressed at higher levels in Tamrabta, and photosynthesis-related genes were expressed more highly in Leiria. The genes involved in light sensing in plants were well represented in the differentially expressed groups of genes. In addition, increased levels of hormones such as abscisic acid, gibberellins, jasmonic and salicylic acid were observed in Leiria. CONCLUSIONS: Both transcriptome platforms have proven to be useful resources, showing complementary and reliable results. The results presented here highlight the different abilities of the two maritime pine populations to sense environmental conditions and reveal one type of regulation that can be ascribed to different genetic and epigenetic backgrounds.


Asunto(s)
Ecosistema , Pinus/genética , Transcriptoma/genética
13.
BMC Plant Biol ; 15: 20, 2015 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-25608602

RESUMEN

BACKGROUND: Glutamine synthetase (GS; EC: 6.3.1.2, L-glutamate: ammonia ligase ADP-forming) is a key enzyme in ammonium assimilation and metabolism in higher plants. In poplar, the GS family is organized in 4 groups of duplicated genes, 3 of which code for cytosolic GS isoforms (GS1.1, GS1.2 and GS1.3) and one group that codes for the choroplastic GS isoform (GS2). Our previous work suggested that GS duplicates may have been retained to increase the amount of enzyme in a particular cell type. RESULTS: The current study was conducted to test this hypothesis by developing a more comprehensive understanding of the molecular and biochemical characteristics of the poplar GS isoenzymes and by determinating their kinetic parameters. To obtain further insights into the function of the poplar GS genes, in situ hybridization and laser capture microdissections were conducted in different tissues, and the precise GS gene spatial expression patterns were determined in specific cell/tissue types of the leaves, stems and roots. The molecular and functional analysis of the poplar GS family and the precise localization of the corresponding mRNA in different cell types strongly suggest that the GS isoforms play non-redundant roles in poplar tree biology. Furthermore, our results support the proposal that a function of the duplicated genes in specific cell/tissue types is to increase the abundance of the enzymes. CONCLUSION: Taken together, our results reveal that there is no redundancy in the poplar GS family at the whole plant level but it exists in specific cell types where the two duplicated genes are expressed and their gene expression products have similar metabolic roles. Gene redundancy may contribute to the homeostasis of nitrogen metabolism in functions associated with changes in environmental conditions and developmental stages.


Asunto(s)
Glutamato-Amoníaco Ligasa/genética , Glutamato-Amoníaco Ligasa/metabolismo , Familia de Multigenes , Populus/enzimología , Populus/genética , Biocatálisis , Estabilidad de Enzimas , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Concentración de Iones de Hidrógeno , Isoenzimas/genética , Isoenzimas/metabolismo , Cinética , Rayos Láser , Microdisección , Peso Molecular , Nitrógeno/metabolismo , Péptidos/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Recombinantes/biosíntesis , Temperatura
14.
J Exp Bot ; 66(11): 3113-27, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25873654

RESUMEN

Conifers include long-lived evergreen trees of great economic and ecological importance, including pines and spruces. During their long lives conifers must respond to seasonal environmental changes, adapt to unpredictable environmental stresses, and co-ordinate their adaptive adjustments with internal developmental programmes. To gain insights into these responses, we examined metabolite and transcriptomic profiles of needles from naturally growing 25-year-old maritime pine (Pinus pinaster L. Aiton) trees over a year. The effect of environmental parameters such as temperature and rain on needle development were studied. Our results show that seasonal changes in the metabolite profiles were mainly affected by the needles' age and acclimation for winter, but changes in transcript profiles were mainly dependent on climatic factors. The relative abundance of most transcripts correlated well with temperature, particularly for genes involved in photosynthesis or winter acclimation. Gene network analysis revealed relationships between 14 co-expressed gene modules and development and adaptation to environmental stimuli. Novel Myb transcription factors were identified as candidate regulators during needle development. Our systems-based analysis provides integrated data of the seasonal regulation of maritime pine growth, opening new perspectives for understanding the complex regulatory mechanisms underlying conifers' adaptive responses. Taken together, our results suggest that the environment regulates the transcriptome for fine tuning of the metabolome during development.


Asunto(s)
Aclimatación , Regulación de la Expresión Génica de las Plantas , Metaboloma , Pinus/fisiología , Transcriptoma , Ambiente , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Análisis de Secuencia por Matrices de Oligonucleótidos , Fotosíntesis/fisiología , Pinus/genética , Pinus/crecimiento & desarrollo , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/fisiología , Lluvia , Estaciones del Año , Temperatura , Árboles
15.
Physiol Plant ; 155(4): 369-83, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26333592

RESUMEN

PpDof 5 is a regulator of the expression of glutamine synthetase (GS; EC 6.3.1.2) genes in photosynthetic and non-photosynthetic tissues of maritime pine. We have used Arabidopsis thaliana as a model system to study PpDof 5 function in planta, generating transgenic lines overexpressing the pine transcription factor. The overexpression of PpDof 5 resulted in a substantial increase of lignin content with a simultaneous regulation of carbon and nitrogen key genes. In addition, partitioning in carbon and nitrogen compounds was spread via various secondary metabolic pathways. These results suggest pleiotropic effects of PpDof 5 expression on various metabolic pathways of carbon and nitrogen metabolism. Plants overexpressing PpDof 5 exhibited upregulation of genes encoding enzymes for sucrose and starch biosynthesis, with a parallel increase in the content of soluble sugars. When the plants were grown under nitrate as the sole nitrogen source, they exhibited a significant regulation of the expression of genes involved mainly in signaling, but similar growth rates to wild-type plants. However, plants grown under ammonium exhibited major induction of the expression of photosynthetic genes and differential expression of ammonium and nitrate transporters. All these data suggest that in addition to controlling ammonium assimilation, PpDof 5 could be also involved in the regulation of other pathways in carbon and nitrogen metabolism in pine trees.


Asunto(s)
Arabidopsis/genética , Carbono/metabolismo , Lignina/metabolismo , Nitrógeno/metabolismo , Pinus/genética , Proteínas de Plantas/genética , Factores de Transcripción/genética , Arabidopsis/metabolismo , Western Blotting , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Ontología de Genes , Pleiotropía Genética , Glutamato-Amoníaco Ligasa/genética , Glutamato-Amoníaco Ligasa/metabolismo , Redes y Vías Metabólicas/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Almidón/metabolismo , Sacarosa/metabolismo , Factores de Transcripción/metabolismo
16.
Plant Biotechnol J ; 12(3): 286-99, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24256179

RESUMEN

Maritime pine (Pinus pinasterAit.) is a widely distributed conifer species in Southwestern Europe and one of the most advanced models for conifer research. In the current work, comprehensive characterization of the maritime pine transcriptome was performed using a combination of two different next-generation sequencing platforms, 454 and Illumina. De novo assembly of the transcriptome provided a catalogue of 26 020 unique transcripts in maritime pine trees and a collection of 9641 full-length cDNAs. Quality of the transcriptome assembly was validated by RT-PCR amplification of selected transcripts for structural and regulatory genes. Transcription factors and enzyme-encoding transcripts were annotated. Furthermore, the available sequencing data permitted the identification of polymorphisms and the establishment of robust single nucleotide polymorphism (SNP) and simple-sequence repeat (SSR) databases for genotyping applications and integration of translational genomics in maritime pine breeding programmes. All our data are freely available at SustainpineDB, the P. pinaster expressional database. Results reported here on the maritime pine transcriptome represent a valuable resource for future basic and applied studies on this ecological and economically important pine species.


Asunto(s)
Biotecnología , Genoma de Planta/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Pinus/genética , Polimorfismo de Nucleótido Simple , Transcriptoma , Cruzamiento , ADN Complementario/genética , Bases de Datos Genéticas , Tamaño del Genoma , Genotipo , Repeticiones de Microsatélite/genética , Anotación de Secuencia Molecular , Familia de Multigenes , ARN de Planta/genética , Análisis de Secuencia de ADN , Factores de Transcripción/genética , Árboles
17.
J Exp Bot ; 65(19): 5527-34, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24902885

RESUMEN

In the chloroplasts and in non-green plastids of plants, aspartate is the precursor for the biosynthesis of different amino acids and derived metabolites that play distinct and important roles in plant growth, reproduction, development or defence. Aspartate biosynthesis is mediated by the enzyme aspartate aminotransferase (EC 2.6.1.1), which catalyses the reversible transamination between glutamate and oxaloacetate to generate aspartate and 2-oxoglutarate. Plastids contain two aspartate aminotransferases: a eukaryotic-type and a prokaryotic-type bifunctional enzyme displaying aspartate and prephenate aminotransferase activities. A general overview of the biochemistry, regulation, functional significance, and phylogenetic origin of both enzymes is presented. The roles of these plastidic aminotransferases in the biosynthesis of essential amino acids are discussed.


Asunto(s)
Aminoácidos Esenciales/metabolismo , Aspartato Aminotransferasas/metabolismo , Plantas/enzimología , Aspartato Aminotransferasas/genética , Ácido Aspártico/metabolismo , Cloroplastos/enzimología , Ácido Glutámico/metabolismo , Ácidos Cetoglutáricos/metabolismo , Modelos Biológicos , Ácido Oxaloacético/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plastidios/enzimología , Especificidad por Sustrato , Tirosina/metabolismo
18.
BMC Plant Biol ; 12: 100, 2012 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-22747794

RESUMEN

BACKGROUND: Transcript profiling of differentiating secondary xylem has allowed us to draw a general picture of the genes involved in wood formation. However, our knowledge is still limited about the regulatory mechanisms that coordinate and modulate the different pathways providing substrates during xylogenesis. The development of compression wood in conifers constitutes an exceptional model for these studies. Although differential expression of a few genes in differentiating compression wood compared to normal or opposite wood has been reported, the broad range of features that distinguish this reaction wood suggest that the expression of a larger set of genes would be modified. RESULTS: By combining the construction of different cDNA libraries with microarray analyses we have identified a total of 496 genes in maritime pine (Pinus pinaster, Ait.) that change in expression during differentiation of compression wood (331 up-regulated and 165 down-regulated compared to opposite wood). Samples from different provenances collected in different years and geographic locations were integrated into the analyses to mitigate the effects of multiple sources of variability. This strategy allowed us to define a group of genes that are consistently associated with compression wood formation. Correlating with the deposition of a thicker secondary cell wall that characterizes compression wood development, the expression of a number of genes involved in synthesis of cellulose, hemicellulose, lignin and lignans was up-regulated. Further analysis of a set of these genes involved in S-adenosylmethionine metabolism, ammonium recycling, and lignin and lignans biosynthesis showed changes in expression levels in parallel to the levels of lignin accumulation in cells undergoing xylogenesis in vivo and in vitro. CONCLUSIONS: The comparative transcriptomic analysis reported here have revealed a broad spectrum of coordinated transcriptional modulation of genes involved in biosynthesis of different cell wall polymers associated with within-tree variations in pine wood structure and composition. In particular, we demonstrate the coordinated modulation at transcriptional level of a gene set involved in S-adenosylmethionine synthesis and ammonium assimilation with increased demand for coniferyl alcohol for lignin and lignan synthesis, enabling a better understanding of the metabolic requirements in cells undergoing lignification.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Lignanos/biosíntesis , Lignina/biosíntesis , Pinus/metabolismo , Proteínas de Plantas/genética , S-Adenosilmetionina/biosíntesis , Madera/crecimiento & desarrollo , Pared Celular/genética , Pared Celular/metabolismo , Pinus/genética , Pinus/crecimiento & desarrollo , Proteínas de Plantas/metabolismo , Madera/genética , Madera/metabolismo , Xilema/genética , Xilema/crecimiento & desarrollo , Xilema/metabolismo
19.
New Phytol ; 194(2): 440-452, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22329725

RESUMEN

Quantitative trait loci (QTLs) for the main steps of nitrogen (N) metabolism in the developing ear of maize (Zea mays L.) and their co-localization with QTLs for kernel yield and putative candidate genes were searched in order to identify chromosomal regions putatively involved in the determination of yield. During the grain-filling period, the changes in physiological traits were monitored in the cob and in the developing kernels, representative of carbon and N metabolism in the developing ear. The correlations between these physiological traits and traits related to yield were examined and localized with the corresponding QTLs on a genetic map. Glycine and serine metabolism in developing kernels and the cognate genes appeared to be of major importance for kernel production. The importance of kernel glutamine synthesis in the determination of yield was also confirmed. The genetic and physiological bases of N metabolism in the developing ear can be studied in an integrated manner by means of a quantitative genetic approach using molecular markers and genomics, and combining agronomic, physiological and correlation studies. Such an approach leads to the identification of possible new regulatory metabolic and developmental networks specific to the ear that may be of major importance for maize productivity.


Asunto(s)
Agricultura , Variación Genética , Nitrógeno/metabolismo , Zea mays/crecimiento & desarrollo , Zea mays/genética , Redes Reguladoras de Genes/genética , Genes de Plantas/genética , Estudios de Asociación Genética , Patrón de Herencia/genética , Fenotipo , Sitios de Carácter Cuantitativo/genética , Carácter Cuantitativo Heredable , Zea mays/metabolismo
20.
Front Plant Sci ; 13: 1102044, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36618661

RESUMEN

Epitranscriptome constitutes a gene expression checkpoint in all living organisms. Nitrogen is an essential element for plant growth and development that influences gene expression at different levels such as epigenome, transcriptome, proteome, and metabolome. Therefore, our hypothesis is that changes in the epitranscriptome may regulate nitrogen metabolism. In this study, epitranscriptomic modifications caused by ammonium nutrition were monitored in maritime pine roots using Oxford Nanopore Technology. Transcriptomic responses mainly affected transcripts involved in nitrogen and carbon metabolism, defense, hormone synthesis/signaling, and translation. Global detection of epitranscriptomic marks was performed to evaluate this posttranscriptional mechanism in un/treated seedlings. Increased N6-methyladenosine (m6A) deposition in the 3'-UTR was observed in response to ammonium, which seems to be correlated with poly(A) lengths and changes in the relative abundance of the corresponding proteins. The results showed that m6A deposition and its dynamics seem to be important regulators of translation under ammonium nutrition. These findings suggest that protein translation is finely regulated through epitranscriptomic marks likely by changes in mRNA poly(A) length, transcript abundance and ribosome protein composition. An integration of multiomics data suggests that the epitranscriptome modulates responses to nutritional, developmental and environmental changes through buffering, filtering, and focusing the final products of gene expression.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA