Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Toxicol Appl Pharmacol ; 489: 116995, 2024 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-38862081

RESUMEN

Identification of Endocrine-Disrupting Chemicals (EDCs) in a regulatory context requires a high level of evidence. However, lines of evidence (e.g. human, in vivo, in vitro or in silico) are heterogeneous and incomplete for quantifying evidence of the adverse effects and mechanisms involved. To date, for the regulatory appraisal of metabolism-disrupting chemicals (MDCs), no harmonised guidance to assess the weight of evidence has been developed at the EU or international level. To explore how to develop this, we applied a formal Expert Knowledge Elicitation (EKE) approach within the European GOLIATH project. EKE captures expert judgment in a quantitative manner and provides an estimate of uncertainty of the final opinion. As a proof of principle, we selected one suspected MDC -triphenyl phosphate (TPP) - based on its related adverse endpoints (obesity/adipogenicity) relevant to metabolic disruption and a putative Molecular Initiating Event (MIE): activation of peroxisome proliferator activated receptor gamma (PPARγ). We conducted a systematic literature review and assessed the quality of the lines of evidence with two independent groups of experts within GOLIATH, with the objective of categorising the metabolic disruption properties of TPP, by applying an EKE approach. Having followed the entire process separately, both groups arrived at the same conclusion, designating TPP as a "suspected MDC" with an overall quantitative agreement exceeding 85%, indicating robust reproducibility. The EKE method provides to be an important way to bring together scientists with diverse expertise and is recommended for future work in this area.

2.
J Proteome Res ; 18(1): 204-216, 2019 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-30394098

RESUMEN

Being able to explore the metabolism of broad metabolizing cells is of critical importance in many research fields. This article presents an original modeling solution combining metabolic network and omics data to identify modulated metabolic pathways and changes in metabolic functions occurring during differentiation of a human hepatic cell line (HepaRG). Our results confirm the activation of hepato-specific functionalities and newly evidence modulation of other metabolic pathways, which could not be evidenced from transcriptomic data alone. Our method takes advantage of the network structure to detect changes in metabolic pathways that do not have gene annotations and exploits flux analyses techniques to identify activated metabolic functions. Compared to the usual cell-specific metabolic network reconstruction approaches, it limits false predictions by considering several possible network configurations to represent one phenotype rather than one arbitrarily selected network. Our approach significantly enhances the comprehensive and functional assessment of cell metabolism, opening further perspectives to investigate metabolic shifts occurring within various biological contexts.


Asunto(s)
Redes y Vías Metabólicas , Metabolómica/métodos , Modelos Biológicos , Diferenciación Celular , Línea Celular , Humanos , Hígado/citología , Hígado/metabolismo
3.
Metabolites ; 12(9)2022 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-36144257

RESUMEN

Tyrosine kinase inhibitors pazopanib and sunitinib are both used to treat advanced renal cell carcinoma but expose patients to an increased risk of hepatotoxicity. We have previously identified two aldehyde derivatives for pazopanib and sunitinib (P-CHO and S-CHO, respectively) in liver microsomes. In this study, we aimed to decipher their role in hepatotoxicity by treating HepG2 and HepaRG hepatic cell lines with these derivatives and evaluating cell viability, mitochondrial dysfunction, and oxidative stress accumulation. Additionally, plasma concentrations of P-CHO were assessed in a cohort of patients treated with pazopanib. Results showed that S-CHO slightly decreased the viability of HepG2, but to a lesser extent than sunitinib, and affected the maximal respiratory capacity of the mitochondrial chain. P-CHO decreased viability and ATP production in HepG2. Traces of P-CHO were detected in the plasma of patients treated with pazopanib. Overall, these results showed that P-CHO and S-CHO affect hepatocyte integrity and could be involved in the pazopanib and sunitinib hepatotoxicity.

4.
Environ Int ; 165: 107336, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35700571

RESUMEN

Fetal brain development depends on maternofetal thyroid function. In rodents and sheep, perinatal BPA exposure is associated with maternal and/or fetal thyroid disruption and alterations in central nervous system development as demonstrated by metabolic modulations in the encephala of mice. We hypothesized that a gestational exposure to a low dose of BPA affects maternofetal thyroid function and fetal brain development in a region-specific manner. Pregnant ewes, a relevant model for human thyroid and brain development, were exposed to BPA (5 µg/kg bw/d, sc). The thyroid status of ewes during gestation and term fetuses at delivery was monitored. Fetal brain development was assessed by metabolic fingerprints at birth in 10 areas followed by metabolic network-based analysis. BPA treatment was associated with a significant time-dependent decrease in maternal TT4 serum concentrations. For 8 fetal brain regions, statistical models allowed discriminating BPA-treated from control lambs. Metabolic network computational analysis revealed that prenatal exposure to BPA modulated several metabolic pathways, in particular excitatory and inhibitory amino-acid, cholinergic, energy and lipid homeostasis pathways. These pathways might contribute to BPA-related neurobehavioral and cognitive disorders. Discrimination was particularly clear for the dorsal hippocampus, the cerebellar vermis, the dorsal hypothalamus, the caudate nucleus and the lateral part of the frontal cortex. Compared with previous results in rodents, the use of a larger animal model allowed to examine specific brain areas, and generate evidence of the distinct region-specific effects of fetal BPA exposure on the brain metabolome. These modifications occur concomitantly to subtle maternal thyroid function alteration. The functional link between such moderate thyroid changes and fetal brain metabolomic fingerprints remains to be determined as well as the potential implication of other modes of action triggered by BPA such as estrogenic ones. Our results pave the ways for new scientific strategies aiming at linking environmental endocrine disruption and altered neurodevelopment.


Asunto(s)
Disruptores Endocrinos , Efectos Tardíos de la Exposición Prenatal , Animales , Compuestos de Bencidrilo/toxicidad , Encéfalo , Disruptores Endocrinos/toxicidad , Femenino , Humanos , Exposición Materna/efectos adversos , Ratones , Fenoles/toxicidad , Embarazo , Ovinos
5.
Metabolites ; 10(9)2020 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-32825089

RESUMEN

The functional understanding of metabolic changes requires both a significant investigation into metabolic pathways, as enabled by global metabolomics and lipidomics approaches, and the comprehensive and accurate exploration of specific key pathways. To answer this pivotal challenge, we propose an optimized approach, which combines an efficient sample preparation, aiming to reduce the variability, with a biphasic extraction method, where both the aqueous and organic phases of the same sample are used for mass spectrometry analyses. We demonstrated that this double extraction protocol allows working with one single sample without decreasing the metabolome and lipidome coverage. It enables the targeted analysis of 40 polar metabolites and 82 lipids, together with the absolute quantification of 32 polar metabolites, providing comprehensive coverage and quantitative measurement of the metabolites involved in central carbon energy pathways. With this method, we evidenced modulations of several lipids, amino acids, and energy metabolites in HepaRG cells exposed to fenofibrate, a model hepatic toxicant, and metabolic modulator. This new protocol is particularly relevant for experiments involving limited amounts of biological material and for functional metabolic explorations and is thus of particular interest for studies aiming to decipher the effects and modes of action of metabolic disrupting compounds.

6.
Metabolites ; 10(3)2020 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-32178364

RESUMEN

Metabolomics has found numerous applications in the study of liver metabolism in health and disease. Metabolomics studies can be conducted in a variety of biological matrices ranging from easily accessible biofluids such as urine, blood or feces, to organs, tissues or even cells. Sample collection and storage are critical steps for which standard operating procedures must be followed. Inappropriate sample collection or storage can indeed result in high variability, interferences with instrumentation or degradation of metabolites. In this review, we will first highlight important general factors that should be considered when planning sample collection in the study design of metabolomic studies, such as nutritional status and circadian rhythm. Then, we will discuss in more detail the specific procedures that have been described for optimal pre-analytical handling of the most commonly used matrices (urine, blood, feces, tissues and cells).

7.
Artículo en Inglés | MEDLINE | ID: mdl-30319551

RESUMEN

The model xeno-estrogen bisphenol A (BPA) has been extensively studied over the past two decades, contributing to major advances in the field of endocrine disrupting chemicals research. Besides its well documented adverse effects on reproduction and development observed in rodents, latest studies strongly suggest that BPA disrupts several endogenous metabolic pathways, with suspected steatogenic and obesogenic effects. BPA's adverse effects on reproduction are attributed to its ability to activate estrogen receptors (ERs), but its effects on metabolism and its mechanism(s) of action at low doses are so far only marginally understood. Metabolomics based approaches are increasingly used in toxicology to investigate the biological changes induced by model toxicants and chemical mixtures, to identify markers of toxicity and biological effects. In this study, we used proton nuclear magnetic resonance (1H-NMR) based untargeted metabolite profiling, followed by multivariate statistics and computational analysis of metabolic networks to examine the metabolic modulation induced in human hepatic cells (HepG2) by an exposure to low and very low doses of BPA (10-6M, 10-9M, and 10-12M), vs. the female reference hormone 17ß-estradiol (E2, 10-9M, 10-12M, and 10-15M). Metabolomic analysis combined to metabolic network reconstruction highlighted different mechanisms at lower doses of exposure. At the highest dose, our results evidence that BPA shares with E2 the capability to modulate several major metabolic routes that ensure cellular functions and detoxification processes, although the effects of the model xeno-estrogen and of the natural hormone can still be distinguished.

8.
PLoS One ; 10(10): e0141698, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26517871

RESUMEN

Along with the well-established effects on fertility and fecundity, perinatal exposure to endocrine disrupting chemicals, and notably to xeno-estrogens, is strongly suspected of modulating general metabolism. The metabolism of a perinatally exposed individual may be durably altered leading to a higher susceptibility of developing metabolic disorders such as obesity and diabetes; however, experimental designs involving the long term study of these dynamic changes in the metabolome raise novel challenges. 1H-NMR-based metabolomics was applied to study the effects of bisphenol-A (BPA, 0; 0.25; 2.5, 25 and 250 µg/kg BW/day) in rats exposed perinatally. Serum and liver samples of exposed animals were analyzed on days 21, 50, 90, 140 and 200 in order to explore whether maternal exposure to BPA alters metabolism. Partial Least Squares-Discriminant Analysis (PLS-DA) was independently applied to each time point, demonstrating a significant pair-wise discrimination for liver as well as serum samples at all time-points, and highlighting unequivocal metabolic shifts in rats perinatally exposed to BPA, including those exposed to lower doses. In BPA exposed animals, metabolism of glucose, lactate and fatty acids was modified over time. To further explore dynamic variation, ANOVA-Simultaneous Component Analysis (A-SCA) was used to separate data into blocks corresponding to the different sources of variation (Time, Dose and Time*Dose interaction). A-SCA enabled the demonstration of a dynamic, time/age dependent shift of serum metabolome throughout the rats' lifetimes. Variables responsible for the discrimination between groups clearly indicate that BPA modulates energy metabolism, and suggest alterations of neurotransmitter signaling, the latter finding being compatible with the neurodevelopmental effect of this xenoestrogen. In conclusion, long lasting metabolic effects of BPA could be characterized over 200 days, despite physiological (and thus metabolic) changes connected with sexual maturation and aging.


Asunto(s)
Compuestos de Bencidrilo/administración & dosificación , Estrógenos no Esteroides/administración & dosificación , Metaboloma/efectos de los fármacos , Fenoles/administración & dosificación , Espectroscopía de Protones por Resonancia Magnética/métodos , Animales , Compuestos de Bencidrilo/farmacología , Metabolismo Energético/efectos de los fármacos , Estrógenos no Esteroides/farmacología , Femenino , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Fenoles/farmacología , Embarazo , Ratas
9.
PLoS One ; 8(5): e63902, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23704952

RESUMEN

Exposure of rodent fetuses to low doses of the endocrine disruptor bisphenol A (BPA) causes subtle morphological changes in the prenatal mammary gland and results in pre-cancerous and cancerous lesions during adulthood. To examine whether the BPA-induced morphological alterations of the fetal mouse mammary glands are a) associated with changes in mRNA expression reflecting estrogenic actions and/or b) dependent on the estrogen receptor α (ERα), we compared the transcriptomal effects of BPA and the steroidal estrogen ethinylestradiol (EE2) on fetal mammary tissues of wild type and ERα knock-out mice. Mammary glands from fetuses of dams exposed to vehicle, 250 ng BPA/kg BW/d or 10 ng EE2/kg BW/d from embryonic day (E) 8 were harvested at E19. Transcriptomal analyses on the ductal epithelium and periductal stroma revealed altered expression of genes involved in the focal adhesion and adipogenesis pathways in the BPA-exposed stroma while genes regulating the apoptosis pathway changed their expression in the BPA-exposed epithelium. These changes in gene expression correlated with previously reported histological changes in matrix organization, adipogenesis, and lumen formation resulting in enhanced maturation of the fat-pad and delayed lumen formation in the epithelium of BPA-exposed fetal mammary glands. Overall similarities in the transcriptomal effects of BPA and EE2 were more pronounced in the epithelium, than in the stroma. In addition, the effects of BPA and EE2 on the expression of various genes involved in mammary stromal-epithelial interactions were suppressed in the absence of ERα. These observations support a model whereby BPA and EE2 act directly on the stroma, which expresses ERα, ERß and GPR30 in fetal mammary glands, and that the stroma, in turn, affects gene expression in the epithelium, where ERα and ERß are below the level of detection at this stage of development.


Asunto(s)
Compuestos de Bencidrilo/toxicidad , Epitelio/metabolismo , Feto/metabolismo , Glándulas Mamarias Animales/embriología , Mesodermo/metabolismo , Fenoles/toxicidad , Efectos Tardíos de la Exposición Prenatal/genética , Transcriptoma/genética , Animales , Apoptosis/efectos de los fármacos , Apoptosis/genética , Análisis por Conglomerados , Epitelio/efectos de los fármacos , Receptor alfa de Estrógeno/metabolismo , Etinilestradiol/farmacología , Femenino , Feto/efectos de los fármacos , Adhesiones Focales/efectos de los fármacos , Adhesiones Focales/metabolismo , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Glándulas Mamarias Animales/efectos de los fármacos , Glándulas Mamarias Animales/metabolismo , Glándulas Mamarias Animales/patología , Mesodermo/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Embarazo , Efectos Tardíos de la Exposición Prenatal/patología , Análisis de Componente Principal , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Células del Estroma/efectos de los fármacos , Células del Estroma/metabolismo , Transcripción Genética/efectos de los fármacos , Troponina C/metabolismo
10.
Environ Health Perspect ; 121(5): 586-93, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23425943

RESUMEN

BACKGROUND: Bisphenol A (BPA) is a well-known endocrine disruptor used to manufacture polycarbonate plastics and epoxy resins. Exposure of pregnant rodents to low doses of BPA results in pleiotropic effects in their offspring. OBJECTIVE: We used metabolomics--a method for determining metabolic changes in response to nutritional, pharmacological, or toxic stimuli--to examine metabolic shifts induced in vivo by perinatal exposure to low doses of BPA in CD-1 mice. METHODS: Male offspring born to pregnant CD-1 mice that were exposed to vehicle or to 0.025, 0.25, or 25 µg BPA/kg body weight/day, from gestation day 8 through day 16 of lactation, were examined on postnatal day (PND) 2 or PND21. Aqueous extracts of newborns (PND2, whole animal) and of livers, brains, and serum samples from PND21 pups were submitted to (1)H nuclear magnetic resonance spectroscopy. Data were analyzed using partial least squares discriminant analysis. RESULTS: Examination of endogenous metabolic fingerprints revealed remarkable discrimination in whole extracts of the four PND2 newborn treatment groups, strongly suggesting changes in the global metabolism. Furthermore, statistical analyses of liver, serum, and brain samples collected on PND21 successfully discriminated among treatment groups. Variations in glucose, pyruvate, some amino acids, and neurotransmitters (γ-aminobutyric acid and glutamate) were identified. CONCLUSIONS: Low doses of BPA disrupt global metabolism, including energy metabolism and brain function, in perinatally exposed CD-1 mouse pups. Metabolomics can be used to highlight the effects of low doses of endocrine disruptors by linking perinatal exposure to changes in global metabolism.


Asunto(s)
Compuestos de Bencidrilo/toxicidad , Disruptores Endocrinos/toxicidad , Feto/efectos de los fármacos , Metaboloma/efectos de los fármacos , Fenoles/toxicidad , Animales , Femenino , Ácido Láctico/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Ratones , Embarazo
12.
Environ Health Perspect ; 119(4): 547-52, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21126938

RESUMEN

BACKGROUND: Perinatal exposure to low-doses of bisphenol A (BPA) results in alterations in the ovary, uterus, and mammary glands and in a sexually dimorphic region of the brain known to be important for estrous cyclicity. OBJECTIVES: We aimed to determine whether perinatal exposure to environmentally relevant doses of BPA alters reproductive capacity. METHODS: Female CD-1 mice that were exposed to BPA at 0, 25 ng, 250 ng, or 25 µg/kg body weight (BW)/day or diethylstilbestrol (DES) at 10 ng/kg BW/day (positive control) from gestational day 8 through day 16 of lactation were continuously housed with proven breeder males for 32 weeks starting at 2 months of age. At each delivery, pups born to these mating pairs were removed. The cumulative number of pups, number of deliveries, and litter size were recorded. The purity of the BPA used in this and our previous studies was assessed using HPLC, mass spectrometry, and nuclear magnetic resonance. RESULTS: The forced breeding experiment revealed a decrease in the cumulative number of pups, observed as a nonmonotonic dose-response effect, and a decline in fertility and fecundity over time in female mice exposed perinatally to BPA. The BPA was 97% pure, with no evidence of contamination by other phenolic compounds. CONCLUSIONS: Perinatal exposure to BPA leads to a dose-dependent decline in the reproductive capacity of female mice. The effects on the cumulative number of pups are comparable to those previously reported in mice developmentally exposed to DES, a compound well known to impair reproduction in women. This association suggests the possibility that early BPA exposure may also affect reproductive capacity in women.


Asunto(s)
Contaminantes Ambientales/toxicidad , Fertilidad/efectos de los fármacos , Fenoles/toxicidad , Reproducción/efectos de los fármacos , Animales , Animales Recién Nacidos , Compuestos de Bencidrilo , Relación Dosis-Respuesta a Droga , Femenino , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA