RESUMEN
The effect of a thermo-oxidative co-treatment placed between the two reactors of two-stage anaerobic digestion of excess municipal sludge was studied. The oxidant used was hydrogen peroxide (H2O2), and moderate temperatures below the boiling point of water were considered. The first experiment was to elucidate the effect of two different temperatures (65 and 90 degrees C) of oxidation using a constant oxidant dose of 1.0 g H2O2/g influent volatile suspended solids (VSSinfluent). The use of thermo-oxidative co-treatment increased overall solids destruction by 24.9 and 33.5%, respectively, when operating at 65 and 90 degrees C, respectively. Because of this significant effect of temperature on the performance of the process, a second experiment was conducted using the higher temperature of 90 degrees C while decreasing the hydrogen peroxide dosage to 0.5, 0.25, and 0.1 g H2O2/g VSSinfluent. An increase in solids destruction of 13.9, 18.9, and 25.6% was observed when the thermo-oxidative co-treatment was used using oxidant dosages of 0.1, 0.25, and 0.5 g H2O2/g VSSinfluent, respectively.
Asunto(s)
Anaerobiosis , Calor , Peróxido de Hidrógeno/farmacología , Aguas del Alcantarillado , Administración de Residuos/métodos , Reactores Biológicos , Recuento de Colonia Microbiana , Enterobacteriaceae/crecimiento & desarrollo , Aguas del Alcantarillado/microbiología , Eliminación de Residuos Líquidos/métodos , Administración de Residuos/economíaRESUMEN
The effect of an oxidative co-treatment on anaerobic digestion of a mixture of primary and waste activated sludge was investigated. The oxidant used in this study was hydrogen peroxide (H2O2). A maximum improvement in solid destruction of 15.2% was achieved in the overall process, with a dosage of 2.0 g H2O2/g influent volatile suspended solids (VSS(influent)). All configurations operated at this dosage also showed statistically significant increases in solids removal. A statistically significant enhancement in overall solids destruction was observed for the lower oxidant dosage (0.5 H2O2/g VSS(influent)). Surprisingly, for 1.0 g H2O2/g VSS(influent), only one of the three configurations involving oxidative co-treatment showed significant increases in solids destruction. Special attention was paid to the performance of this process relative to fecal coliforms destruction. Class A biosolids were obtained for all the different hydrogen peroxide dosages used when oxidative co-treatment is combined with a two-stage anaerobic digestion process.