Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
1.
Circ Res ; 134(4): 351-370, 2024 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-38299369

RESUMEN

BACKGROUND: Pulmonary hypertension (PH) is a progressive disorder characterized by remodeling of the pulmonary vasculature and elevated mean pulmonary arterial pressure, resulting in right heart failure. METHODS: Here, we show that direct targeting of the endothelium to uncouple eNOS (endothelial nitric oxide synthase) with DAHP (2,4-diamino 6-hydroxypyrimidine; an inhibitor of GTP cyclohydrolase 1, the rate-limiting synthetic enzyme for the critical eNOS cofactor tetrahydrobiopterin) induces human-like, time-dependent progression of PH phenotypes in mice. RESULTS: Critical phenotypic features include progressive elevation in mean pulmonary arterial pressure, right ventricular systolic blood pressure, and right ventricle (RV)/left ventricle plus septum (LV+S) weight ratio; extensive vascular remodeling of pulmonary arterioles with increased medial thickness/perivascular collagen deposition and increased expression of PCNA (proliferative cell nuclear antigen) and alpha-actin; markedly increased total and mitochondrial superoxide production, substantially reduced tetrahydrobiopterin and nitric oxide bioavailabilities; and formation of an array of human-like vascular lesions. Intriguingly, novel in-house generated endothelial-specific dihydrofolate reductase (DHFR) transgenic mice (tg-EC-DHFR) were completely protected from the pathophysiological and molecular features of PH upon DAHP treatment or hypoxia exposure. Furthermore, DHFR overexpression with a pCMV-DHFR plasmid transfection in mice after initiation of DAHP treatment completely reversed PH phenotypes. DHFR knockout mice spontaneously developed PH at baseline and had no additional deterioration in response to hypoxia, indicating an intrinsic role of DHFR deficiency in causing PH. RNA-sequencing experiments indicated great similarity in gene regulation profiles between the DAHP model and human patients with PH. CONCLUSIONS: Taken together, these results establish a novel human-like murine model of PH that has long been lacking in the field, which can be broadly used for future mechanistic and translational studies. These data also indicate that targeting endothelial DHFR deficiency represents a novel and robust therapeutic strategy for the treatment of PH.


Asunto(s)
Hipertensión Pulmonar , Tetrahidrofolato Deshidrogenasa , Animales , Humanos , Ratones , Endotelio/metabolismo , Hipertensión Pulmonar/tratamiento farmacológico , Hipertensión Pulmonar/genética , Hipoxia , Ratones Noqueados , Ratones Transgénicos , Óxido Nítrico Sintasa de Tipo III/genética , Óxido Nítrico Sintasa de Tipo III/metabolismo , Tetrahidrofolato Deshidrogenasa/genética , Tetrahidrofolato Deshidrogenasa/metabolismo , Tetrahidrofolato Deshidrogenasa/deficiencia , Hipoxantinas , Modelos Animales de Enfermedad
2.
Mol Biol Evol ; 41(3)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38377349

RESUMEN

Viruses represent a major threat to all animals, which defend themselves through induction of a large set of virus-stimulated genes that collectively control the infection. In vertebrates, these genes include interferons that play a critical role in the amplification of the response to infection. Virus- and interferon-stimulated genes include restriction factors targeting the different steps of the viral replication cycle, in addition to molecules associated with inflammation and adaptive immunity. Predictably, antiviral genes evolve dynamically in response to viral pressure. As a result, each animal has a unique arsenal of antiviral genes. Here, we exploit the capacity to experimentally activate the evolutionarily conserved stimulator of IFN genes (STING) signaling pathway by injection of the cyclic dinucleotide 2'3'-cyclic guanosine monophosphate-adenosine monophosphate into flies to define the repertoire of STING-regulated genes in 10 Drosophila species, spanning 40 million years of evolution. Our data reveal a set of conserved STING-regulated factors, including STING itself, a cGAS-like-receptor, the restriction factor pastel, and the antiviral protein Vago, but also 2 key components of the antiviral RNA interference pathway, Dicer-2, and Argonaute2. In addition, we identify unknown species- or lineage-specific genes that have not been previously associated with resistance to viruses. Our data provide insight into the core antiviral response in Drosophila flies and pave the way for the characterization of previously unknown antiviral effectors.


Asunto(s)
Drosophila , Inmunidad Innata , Animales , Nucleótidos Cíclicos , Antivirales/farmacología
3.
Oncologist ; 2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39066586

RESUMEN

BACKGROUND AND AIMS: Liver involvement portends poor prognosis in adults. We aimed to characterize the clinical features, liver function tests, radiologic findings, molecular profiles, therapeutic approaches and outcomes of adults patients with Langerhans cell histiocytosis (LCH) with liver involvement. METHODS: We conducted a retrospective analysis of all adults with LCH (≥ 18 years) seen at Peking Union Medical College Hospital (Beijing, China) between January 2001 and December 2022. RESULTS: Among the 445 newly diagnosed adults with LCH, 90 patients had liver involvement at diagnosis and 22 patients at relapse. The median age was 32 years (range, 18-66 years). Of 112 evaluable patients, 108 had full liver function testing, including alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase (ALP), γ-glutamyl transpeptidase (GGT), and total bilirubin and albumin. Elevated ALP was seen in 63.0% and GGT in 86.1%; 14.8% had elevated bilirubin. Next-generation sequencing of 54 patients revealed frequent BRAFN486_P490 (29.6%), BRAFV600E (18.5%), and MAP2K1 (14.8%). OUTCOMES: After a median 40 months' follow-up (range 1-168 months), 3-year progression-free survival (PFS) and overall survival were 49.7% and 86.6% respectively. In multivariable analyses, ≥3 abnormal liver function tests (HR 3.384, 95% CI 1.550-7.388, P = .002) associated with inferior PFS; immunomodulatory drug therapy (HR 0.073, 95% CI, 0.010-0.541, P = .010) correlated with superior PFS versus chemotherapy. CONCLUSIONS: In summary, elevated GGT and ALP were common in adults with LCH liver involvement. Greater than equal to 3 abnormal liver function tests predicted poor outcomes. Immunomodulatory drug therapy was associated with favorable progression-free survival compared to chemotherapy.

4.
Small ; 20(28): e2309882, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38342670

RESUMEN

Negative therapeutic feedback of inflammation would extensively attenuate the antitumor effect of photodynamic therapy (PDT). In this work, tumor homing chimeric peptide rhomboids (designated as NP-Mel) are fabricated to improve photodynamic performance by inhibiting PDT-upregulated cyclooxygenase-2 (COX-2). The hydrophobic photosensitizer of protoporphyrin IX (PpIX) and palmitic acid are conjugated onto the neuropilin receptors (NRPs) targeting peptide motif (CGNKRTR) to obtain tumor homing chimeric peptide (Palmitic-K(PpIX)CGNKRTR), which can encapsulate the COX-2 inhibitor of meloxicam. The well dispersed NP-Mel not only improves the drug stability and reactive oxygen species (ROS) production ability, but also increase the breast cancer targeted drug delivery to intensify the PDT effect. In vitro and in vivo studies verify that NP-Mel will decrease the secretion of prostaglandin E2 (PGE2) after PDT treatment, inducing the downregulation of IL-6 and TNF-α expressions to suppress PDT induced inflammation. Ultimately, an improved PDT performance of NP-Mel is achieved without inducing obvious systemic toxicity, which might inspire the development of sophisticated nanomedicine in consideration of the feedback induced therapeutic resistance.


Asunto(s)
Ciclooxigenasa 2 , Péptidos , Fotoquimioterapia , Fotoquimioterapia/métodos , Ciclooxigenasa 2/metabolismo , Péptidos/química , Péptidos/farmacología , Animales , Humanos , Línea Celular Tumoral , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/química , Especies Reactivas de Oxígeno/metabolismo , Femenino , Meloxicam/farmacología , Meloxicam/uso terapéutico , Ratones , Protoporfirinas/química , Protoporfirinas/farmacología , Dinoprostona/metabolismo
5.
Artículo en Inglés | MEDLINE | ID: mdl-39075656

RESUMEN

INTRODUCTION: The anterior and lateral position of the anterolateral papillary muscle (ALPM) has found to be reached with better catheter stability and less mechanical bumping via the transseptal (TS) compared to the retrograde aortic (RA) approach. The aim of this study is to compare the TS and RA approaches on mapping and ablation of ventricular arrhythmias (VAs) arising from ALPMs. METHODS: Thirty-two patients with ALPM-VAs undergoing mapping and ablation via the TS approach were included and compared with 31 patients via the RA approach within the same period. Acute success was compared, as well as other outcomes including misinterpreted mapping results due to bumping, radiofrequency (RF) attempts, procedural time and success rate at 12-month follow-up. RESULTS: Acute success was achieved in more cases in the TS group (96.4% vs. 72.0%, p = .020). During activation mapping, bump-provoked premature ventricular complexes (PVCs) misinterpreted as clinical PVCs were more common in the RA group (30.0% vs. 58.3%, p = .036), leading to more RF attempts (3.5 ± 2.7 vs. 7.2 ± 6.8, p = .006). Suppression of VAs were finally achieved in the unsuccessful cases by changing to the alternative approach, but the procedural time was significantly less in the TS group (90.0 ± 33.0 vs. 113.7 ± 41.1 min, p = .027) with less need to change the approach, although follow-up success rates were similar (75.0% vs. 71.0%, p = .718). CONCLUSION: A TS rather than RA approach as the initial approach appears to facilitate mapping and ablation of ALPM-VAs, specifically by decreasing the possibility of misleading mapping results caused by bump-provoked PVC, and increase the acute success rate thereby.

6.
Chemistry ; 30(20): e202400045, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38298110

RESUMEN

Cinnamic ester is a common and abundant chemical substance, which can be extracted from natural plants. Compared with traditional esters, cinnamic ester contains α,ß-unsaturated carbonyl structure with multiple reactive sites, resulting in more abundant reactivities and chemical structures. Here, a versatile polymerization-induced emission (PIE) is successfully demonstrated through Barbier polymerization of cinnamic ester. Attributed to its abundant reactivities of α,ß-unsaturated carbonyl structure, Barbier polymerization of cinnamic esters with different organodihalides gives polyalcohol and polyketone via 1,2-addition and 1,4-addition, respectively, which is also confirmed by small molecular model reactions. Meanwhile, these organodihalides dependant polyalcohol and polyketone exhibit different non-traditional intrinsic luminescence (NTIL) from aggregation-induced emission (AIE) type to aggregation-caused quenching (ACQ) type, where novel PIE luminogens (PIEgens) are revealed. Further potential applications in explosive detection are carried out, where it achieves TNT detection sensitivity at ppm level in solution and ng level on the test paper. This work therefore expands the structure and functionality libraries of monomer, polymer and NTIL, which might cause inspirations to different fields including polymer chemistry, NTIL, AIE and PIE.

7.
Cell Commun Signal ; 22(1): 307, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38831315

RESUMEN

BACKGROUND: Interleukin 24 (IL-24) has been implicated in the nociceptive signaling. However, direct evidence and the precise molecular mechanism underlying IL-24's role in peripheral nociception remain unclear. METHODS: Using patch clamp recording, molecular biological analysis, immunofluorescence labeling, siRNA-mediated knockdown approach and behavior tests, we elucidated the effects of IL-24 on sensory neuronal excitability and peripheral pain sensitivity mediated by T-type Ca2+ channels (T-type channels). RESULTS: IL-24 enhances T-type channel currents (T-currents) in trigeminal ganglion (TG) neurons in a reversible and dose-dependent manner, primarily by activating the interleukin-22 receptor 1 (IL-22R1). Furthermore, we found that the IL-24-induced T-type channel response is mediated through tyrosine-protein kinase Lyn, but not its common downstream target JAK1. IL-24 application significantly activated protein kinase A; this effect was independent of cAMP and prevented by Lyn antagonism. Inhibition of PKA prevented the IL-24-induced T-current response, whereas inhibition of protein kinase C or MAPK kinases had no effect. Functionally, IL-24 increased TG neuronal excitability and enhanced pain sensitivity to mechanical stimuli in mice, both of which were suppressed by blocking T-type channels. In a trigeminal neuropathic pain model induced by chronic constriction injury of the infraorbital nerve, inhibiting IL-22R1 signaling alleviated mechanical allodynia, which was reversed by blocking T-type channels or knocking down Cav3.2. CONCLUSION: Our findings reveal that IL-24 enhances T-currents by stimulating IL-22R1 coupled to Lyn-dependent PKA signaling, leading to TG neuronal hyperexcitability and pain hypersensitivity. Understanding the mechanism of IL-24/IL-22R1 signaling in sensory neurons may pave the way for innovative therapeutic strategies in pain management.


Asunto(s)
Canales de Calcio Tipo T , Proteínas Quinasas Dependientes de AMP Cíclico , Receptores de Interleucina , Células Receptoras Sensoriales , Transducción de Señal , Ganglio del Trigémino , Familia-src Quinasas , Animales , Canales de Calcio Tipo T/metabolismo , Canales de Calcio Tipo T/genética , Familia-src Quinasas/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Ganglio del Trigémino/metabolismo , Masculino , Células Receptoras Sensoriales/metabolismo , Células Receptoras Sensoriales/efectos de los fármacos , Células Receptoras Sensoriales/fisiología , Receptores de Interleucina/metabolismo , Ratones , Ratones Endogámicos C57BL , Interleucinas/metabolismo
8.
Langmuir ; 40(28): 14413-14425, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38946296

RESUMEN

Atmospheric water harvesting (AWH) technology is a new strategy for alleviating freshwater scarcity. Adsorbent materials with high hygroscopicity and high photothermal conversion efficiency are the key to AWH technology. Hence, in this study, a simple and large-scale preparation for a hygroscopic compound of polyurethane (PU) sponge-grafted calcium alginate (CA) with carbon ink (SCAC) was developed. The PU sponge in the SCAC aerogel acts as a substrate, CA as a moisture adsorber, and carbon ink as a light adsorber. The SCAC aerogel exhibits excellent water absorption of 0.555-1.40 g·g-1 within a wide range of relative humidity (40-80%) at 25 °C. The SCAC aerogel could release adsorbed water driven by solar energy, and more than 92.17% of the adsorbed water could be rapidly released over a wide solar intensity range of 1.0-2.0 sun. In an outdoor experiment, 57.517 g of SCAC was able to collect 32.8 g of clean water in 6 h, and the water quality meets the drinking water standards set by the World Health Organization. This study suggests a new approach to design promising AWH materials and infers the potential practical application of SCAC aerogel-based adsorbents.

9.
BMC Cardiovasc Disord ; 24(1): 398, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39085776

RESUMEN

BACKGROUND: Stroke and thromboembolism in nonvalvular atrial fibrillation (NVAF) primarily arise from thrombi or sludge in the left atrial appendage (LAA). Comprehensive insight into the characteristics of these formations is essential for effective risk assessment and management. METHODS: We conducted a single-center retrospective observational of 176 consecutive NVAF patients with confirmed atrial/appendage thrombus or sludge determined by a pre-ablation transesophageal echocardiogram (TEE) from December 2017 to April 2019. We obtained clinical and echocardiographic characteristics, including left atrial appendage emptying velocity (LAAeV) and filling velocity (LAAfV). Data analysis focused on identifying the morphology and location of thrombus or sludge. Patients were divided into the solid thrombus and sludge groups, and the correlation between clinical and echocardiographic variables and thrombotic status was analyzed. RESULTS: Morphological classification: In total, thrombi were identified in 78 patients, including 71 (40.3%) mass and 7 (4.0%) lamellar, while sludge was noted in 98 (55.7%). Location classification: 92.3% (72/78) of patients had thrombus confined to the LAA; 3.8% (3/78) had both LA and LAA involvement; 2.7% (2/78) had LA, LAA and RAA extended into the RA, the remained 1.2%(1/78) was isolated to RAA. 98.0% (96/98) of patients had sludge confined to the LAA; the remaining 2.0% (2/98) were present in the atrial septal aneurysm, which protrusion of interatrial septum into the RA. The thrombus and sludge groups showed low LAAeV (19.43 ± 9.59 cm/s) or LAAfV (17.40 ± 10.09 cm/s). Only LA dimension ≥ 40 mm was independently associated with the thrombus state in the multivariable model. CONCLUSION: This cohort study identified rare thrombus morphology and systematically summarized the classification of thrombus morphology. The distribution of thrombus and sludge outside limited to LAA was updated, including bilateral atrial and appendage involvement and rare atrial septal aneurysm sludge. LAAeV and LAAfV were of limited value in distinguishing solid thrombus from sludge. CLINICAL TRIAL NUMBER: ChiCTR-OCH-13,003,729.


Asunto(s)
Apéndice Atrial , Fibrilación Atrial , Ecocardiografía Transesofágica , Trombosis , Humanos , Fibrilación Atrial/fisiopatología , Fibrilación Atrial/diagnóstico , Estudios Retrospectivos , Masculino , Femenino , Trombosis/diagnóstico por imagen , Trombosis/etiología , Anciano , Persona de Mediana Edad , Apéndice Atrial/diagnóstico por imagen , Apéndice Atrial/fisiopatología , Factores de Riesgo , Valor Predictivo de las Pruebas , Función del Atrio Izquierdo , Cardiopatías/diagnóstico por imagen , Cardiopatías/fisiopatología , Tromboembolia/etiología , Tromboembolia/diagnóstico por imagen , Tromboembolia/diagnóstico
10.
Pacing Clin Electrophysiol ; 47(4): 518-524, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38407374

RESUMEN

BACKGROUND: Left bundle branch block (LBBB) and atrial fibrillation (AF) are commonly coexisting conditions. The impact of LBBB on catheter ablation of AF has not been well determined. This study aims to explore the long-term outcomes of patients with AF and LBBB after catheter ablation. METHODS: Forty-two patients with LBBB of 11,752 patients who underwent catheter ablation of AF from 2011 to 2020 were enrolled as LBBB group. After propensity score matching in a 1:4 ratio, 168 AF patients without LBBB were enrolled as non-LBBB group. Late recurrence and a composite endpoint of stroke, all-cause mortality, and cardiovascular hospitalization were compared between the two groups. RESULTS: Late recurrence rate was significantly higher in the LBBB group than that in the non-LBBB group (54.8% vs. 31.5%, p = .034). Multivariate analysis showed that LBBB was an independent risk factor for late recurrence after catheter ablation of AF (hazard ratio [HR] 2.19, 95% confidence interval [CI] 1.09-4.40, p = .031). LBBB group was also associated with a significantly higher incidence of the composite endpoint (21.4% vs. 6.5%, HR 3.98, 95% CI 1.64-9.64, p = .002). CONCLUSIONS: LBBB was associated with a higher risk for late recurrence and a higher incidence of composite endpoint in the patients underwent catheter ablation.


Asunto(s)
Fibrilación Atrial , Ablación por Catéter , Accidente Cerebrovascular , Humanos , Bloqueo de Rama/etiología , Factores de Riesgo , Accidente Cerebrovascular/etiología , Ablación por Catéter/efectos adversos , Resultado del Tratamiento , Recurrencia
11.
Bioorg Chem ; 148: 107427, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38728911

RESUMEN

Histone acetyltransferase CREB-binding protein (CBP) and its homologous protein p300 are key transcriptional activators that can activate oncogene transcription, which present promising targets for cancer therapy. Here, we designed and synthesized a series of p300/CBP targeted low molecular weight PROTACs by assembling the covalent ligand of RNF126 E3 ubiquitin ligase and the bromodomain ligand of the p300/CBP. The optimal molecule A8 could effectively degrade p300 and CBP through the ubiquitin-proteasome system in time- and concentration-dependent manners, with half-maximal degradation (DC50) concentrations of 208.35/454.35 nM and 82.24/79.45 nM for p300/CBP in MV4-11 and Molm13 cell lines after 72 h of treatment. And the degradation of p300/CBP by A8 is dependent on the ubiquitin-proteasome pathway and its simultaneous interactions with the target proteins and RNF126. A8 exhibits good antiproliferative activity in a series of p300/CBP-dependent cancer cells. It could transcriptionally inhibit the expression of c-Myc, induce cell cycle arrest in the G0/G1 phase and apoptosis in MV4-11 cells. This study thus provided us a new chemotype for the development of drug-like PROTACs targeting p300/CBP, which is expected to be applied in cancer therapy.


Asunto(s)
Antineoplásicos , Proliferación Celular , Relación Dosis-Respuesta a Droga , Diseño de Fármacos , Ensayos de Selección de Medicamentos Antitumorales , Ubiquitina-Proteína Ligasas , Factores de Transcripción p300-CBP , Humanos , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/antagonistas & inhibidores , Factores de Transcripción p300-CBP/metabolismo , Factores de Transcripción p300-CBP/antagonistas & inhibidores , Antineoplásicos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Relación Estructura-Actividad , Estructura Molecular , Apoptosis/efectos de los fármacos , Línea Celular Tumoral
12.
Environ Res ; 245: 117995, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38145731

RESUMEN

BACKGROUND: The increasing problem of bacterial resistance, particularly with quinolone-resistant Escherichia coli (QnR eco) poses a serious global health issue. METHODS: We collected data on QnR eco resistance rates and detection frequencies from 2014 to 2021 via the China Antimicrobial Resistance Surveillance System, complemented by meteorological and socioeconomic data from the China Statistical Yearbook and the China Meteorological Data Service Centre (CMDC). Comprehensive nonparametric testing and multivariate regression models were used in the analysis. RESULT: Our analysis revealed significant regional differences in QnR eco resistance and detection rates across China. Along the Hu Huanyong Line, resistance rates varied markedly: 49.35 in the northwest, 54.40 on the line, and 52.30 in the southeast (P = 0.001). Detection rates also showed significant geographical variation, with notable differences between regions (P < 0.001). Climate types influenced these rates, with significant variability observed across different climates (P < 0.001). Our predictive model for resistance rates, integrating climate and healthcare factors, explained 64.1% of the variance (adjusted R-squared = 0.641). For detection rates, the model accounted for 19.2% of the variance, highlighting the impact of environmental and healthcare influences. CONCLUSION: The study found higher resistance rates in warmer, monsoon climates and areas with more public health facilities, but lower rates in cooler, mountainous, or continental climates with more rainfall. This highlights the strong impact of climate on antibiotic resistance. Meanwhile, the predictive model effectively forecasts these resistance rates using China's diverse climate data. This is crucial for public health strategies and helps policymakers and healthcare practitioners tailor their approaches to antibiotic resistance based on local environmental conditions. These insights emphasize the importance of considering regional climates in managing antibiotic resistance.


Asunto(s)
Proteínas de Escherichia coli , Quinolonas , Escherichia coli , China/epidemiología , Farmacorresistencia Bacteriana , Antibacterianos/farmacología
13.
Appl Microbiol Biotechnol ; 108(1): 170, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38265689

RESUMEN

The deep-sea environment is an extremely difficult habitat for microorganisms to survive in due to its intense hydrostatic pressure. However, the mechanisms by which these organisms adapt to such extreme conditions remain poorly understood. In this study, we investigated the metabolic adaptations of Microbacterium sediminis YLB-01, a cold and stress-tolerant microorganism isolated from deep-sea sediments, in response to high-pressure conditions. YLB-01 cells were cultured at normal atmospheric pressure and 28 ℃ until they reached the stationary growth phase. Subsequently, the cells were exposed to either normal pressure or high pressure (30 MPa) at 4 ℃ for 7 days. Using NMR-based metabolomic and proteomic analyses of YLB-01 cells exposed to high-pressure conditions, we observed significant metabolic changes in several metabolic pathways, including amino acid, carbohydrate, and lipid metabolism. In particular, the high-pressure treatment stimulates cell division and triggers the accumulation of UDP-glucose, a critical factor in cell wall formation. This finding highlights the adaptive strategies used by YLB-01 cells to survive in the challenging high-pressure environments of the deep sea. Specifically, we discovered that YLB-01 cells regulate amino acid metabolism, promote carbohydrate metabolism, enhance cell wall synthesis, and improve cell membrane fluidity in response to high pressure. These adaptive mechanisms play essential roles in supporting the survival and growth of YLB-01 in high-pressure conditions. Our study offers valuable insights into the molecular mechanisms underlying the metabolic adaptation of deep-sea microorganisms to high-pressure environments. KEY POINTS: • NMR-based metabolomic and proteomic analyses were conducted on Microbacterium sediminis YLB-01 to investigate the significant alterations in several metabolic pathways in response to high-pressure treatment. • YLB-01 cells used adaptive strategies (such as regulated amino acid metabolism, promoted carbohydrate metabolism, enhanced cell wall synthesis, and improved cell membrane fluidity) to survive in the challenging high-pressure environment of the deep sea. • High-pressure treatment stimulated cell division and triggered the accumulation of UDP-glucose, a critical factor in cell wall formation, in Microbacterium sediminis YLB-01 cells.


Asunto(s)
Actinomycetales , Proteómica , Aminoácidos , Glucosa , Uridina Difosfato , Microbacterium
14.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 46(3): 348-353, 2024 Jun.
Artículo en Zh | MEDLINE | ID: mdl-38864299

RESUMEN

Objective To investigate the relationship between cerebrovascular reactivity (CVR) and emotional disorders in the patients undergoing continuous hemodialysis for end-stage renal disease (ESRD).Methods The clinical data of the ESRD patients undergoing continuous hemodialysis were collected.Anxiety and depression of the patients were assessed by the Hamilton anxiety scale (HAMA) and Beck depression inventory,respectively.The cerebral hemodynamic changes during the breath holding test were monitored by transcranial Doppler sonography,and the breath-holding index (BHI) was calculated.The BHI≥0.69 and BHI<0.69 indicate normal CVR and abnormal CVR,respectively.Binary Logistic regression was employed to analyze the factors affecting the depressive state of ESRD patients.Results The group with abnormal CVR exhibited higher total cholesterol level (P=0.010),low density lipoprotein level (P=0.006),and incidence of depression (P=0.012) than the group with normal CVR.Compared with the non-depression group,the depression group displayed prolonged disease course (P=0.039),reduced body mass index (P=0.048),elevated HAMA score (P=0.001),increased incidence of anxiety (P<0.001),decreased BHI (P=0.015),and increased incidence of abnormal CVR (P=0.012).Binary Logistic regression analysis indicated anxiety as a contributing factor (OR=22.915,95%CI=2.653-197.956,P=0.004) and abnormal CVR as a risk factor (OR=0.074,95%CI=0.008-0.730,P=0.026) for depression.Conclusion Impaired CVR could pose a risk for depression in the patients with ESRD.


Asunto(s)
Depresión , Fallo Renal Crónico , Humanos , Masculino , Femenino , Persona de Mediana Edad , Fallo Renal Crónico/fisiopatología , Fallo Renal Crónico/complicaciones , Depresión/fisiopatología , Adulto , Diálisis Renal , Circulación Cerebrovascular/fisiología , Anciano
15.
Philos Trans R Soc Lond B Biol Sci ; 379(1901): 20230068, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38497262

RESUMEN

Over the past 25 years, the field of evolutionary developmental biology (evo-devo) has used genomics and genetics to gain insight on the developmental mechanisms underlying the evolution of morphological diversity of animals. Evo-devo exploits the key insight that conserved toolkits of development (e.g. Hox genes) are used in animals to produce genetic novelties that provide adaptation to a new environment. Like development, immunity is forged by interactions with the environment, namely the microbial world. Yet, when it comes to the study of immune defence mechanisms in invertebrates, interest primarily focuses on evolutionarily conserved molecules also present in humans. Here, focusing on antiviral immunity, we argue that immune genes not conserved in humans represent an unexplored resource for the discovery of new antiviral strategies. We review recent findings on the cGAS-STING pathway and explain how cyclic dinucleotides produced by cGAS-like receptors may be used to investigate the portfolio of antiviral genes in a broad range of species. This will set the stage for evo-immuno approaches, exploiting the investment in antiviral defences made by metazoans over hundreds of millions of years of evolution. This article is part of the theme issue 'Sculpting the microbiome: how host factors determine and respond to microbial colonization'.


Asunto(s)
Nucleotidiltransferasas , Animales , Humanos , Nucleotidiltransferasas/metabolismo
16.
Technol Cancer Res Treat ; 23: 15330338241249032, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38679728

RESUMEN

Objective: Recent studies have revealed that hemoglobin beta (HBB) plays an important role not only in blood disorders but also in malignancies. The aim of this study is to investigate the clinical significance, diagnostic value, and biological function of HBB in lung cancer. Methods: HBB expression was examined in lung cancer tissues and plasma samples using quantitative real-time polymerase chain reaction, and its relationship with clinical pathological characteristics was analyzed. Receiver operating characteristic (ROC) curves were constructed to evaluate the diagnostic value of HBB in lung cancer. The proliferation of A549 and SPCA1 cells was analyzed using a cell counting kit-8 assay and protein expressions were detected by western blot. Results: The expressions of HBB were found to be down-regulated in both lung cancer tissues and plasma samples. Notably, plasma HBB levels were significantly elevated in postoperative samples when compared to their preoperative counterparts. Across 66 cases of lung cancer tissues, a correlation was observed between HBB levels and both gender and tumor, node, metastasis staging. ROC curve analysis further confirmed the high diagnostic potential of HBB expression in lung cancer. Moreover, the combination of HBB and carcinoembryonic antigen (CEA) had greater significance than HBB or CEA alone in the diagnosis of lung cancer. Knocking out or overexpressing HBB could affect lung cancer cell proliferation through the ERK1/2 signaling pathway. Conclusion: HBB can serve as a novel biomarker for the diagnosis and monitoring of lung cancer, regulating cell proliferation via the ERK1/2 pathway and playing a pivotal role in the oncogenesis and progression of the disease.


Asunto(s)
Biomarcadores de Tumor , Neoplasias Pulmonares , Sistema de Señalización de MAP Quinasas , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Línea Celular Tumoral , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Hemoglobinas/metabolismo , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/genética , Estadificación de Neoplasias , Pronóstico , Curva ROC
17.
Plant Physiol Biochem ; 213: 108764, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38879983

RESUMEN

The phosphoenolpyruvate carboxylase kinase of Medicago sativa L. (MsPPCK1) modulates the phosphorylation status and activity of the C4 pathway phosphoenolpyruvate carboxylase enzyme, which is pivotal for photosynthetic carbon assimilation in plants. This study investigated the role of MsPPCK1 in alfalfa by creating transgenic plants overexpressing MsPPCK1 under the control of the CaMV35S promoter. The enhanced alkali tolerance of transgenic plants indicated an important role of MsPPCK1 gene in regulating plant alkali tolerance. Transgenic plants exhibited heightened antioxidant activity (SOD, POD, and CAT), reduced MDA, H2O2, OFR and REC% content, increased activity of key photosynthetic enzymes (PEPC, PPDK, NADP-ME, and NADP-MDH), and enhanced photosynthetic parameters (Pn, E, Gs, and Ci). Moreover, MsPPCK1 overexpression increased the content of organic acids (oxaloacetic, malic, citric, and succinic acids) in the plants. The upregulation of MsPPCK1 under rhizobial inoculation showcased its other role in nodule development. In transgenic plants, MsDMI2, MsEnod12, and MsNODL4 expression increased, facilitating root nodule development and augmenting plant nodulation. Accelerated root nodule growth positively influences plant growth and yield and enhances alfalfa resistance to alkali stress. This study highlights the pivotal role of MsPPCK1 in fortifying plant alkali stress tolerance and improving yield, underscoring its potential as a key genetic target for developing alkali-tolerant and high-yielding alfalfa varieties.


Asunto(s)
Medicago sativa , Fotosíntesis , Proteínas de Plantas , Plantas Modificadas Genéticamente , Medicago sativa/genética , Medicago sativa/enzimología , Medicago sativa/crecimiento & desarrollo , Fotosíntesis/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Nódulos de las Raíces de las Plantas/genética , Nódulos de las Raíces de las Plantas/crecimiento & desarrollo , Nódulos de las Raíces de las Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Álcalis , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Proteínas Serina-Treonina Quinasas
18.
Redox Biol ; 75: 103178, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38986245

RESUMEN

To this date, COVID-19 remains an unresolved pandemic, and the impairment of redox homeostasis dictates the severity of clinical outcomes. Here we examined initial UCLA cohort of 440 COVID-19 patients hospitalized between March 1st and April 1st, 2020, representing the first wave of the pandemic. The mean age was 58.88 ± 21.12, among which males were significantly more than females (55.5 % vs. 44.5 %), most distinctively in age group of 50-69. The age groups of 50-69 (33.6 %) and ≥70 (34.8 %) dominated. The racial composition was in general agreement with Census data with slight under-representation of Hispanics and Asians, and over-representation of Caucasians. Smoking was a significant factor (28.8 % vs. 11.0 % in LA population), likewise for obesity (BMI ≥30) (37.4 % vs. 27.7 % in LA population). Patients suffering from obesity or BMI<18.5 checked into ICU at a significantly higher rate. A 74.5 % of the patients had comorbidities including diabetes, chronic kidney disease, chronic pulmonary disease, congestive heart failure and peripheral vascular disease. The levels of d-dimer were drastically upregulated (1159.5 ng/mL), indicating hypercoagulative state. Upregulated LDH (328 IU/L) indicated significant tissue damages. A distorted redox hemeostasis is a common trait associated with these risk factors and clinical markers. A quarter of the patients received antivirals, among which Remdesivir most prescribed (23.6 %). Majority received antithrombotics (75 %), and antibiotics. Upon admission, 67 patients were intubated or received CPR; 177 patients eventually received intensive care (40.2 %). While 290 were discharged alive, 10 remained hospitalized, 73 were transferred, and 36 died with 3 palliatively discharged. In summary, our data fully characterized a Californian cohort of COVID-19 at the breaking phase of the pandemic, indicating that population demographics, biophysical characters, comorbidities and molecular pathological parameters have significant impacts on the evolvement of a pandemic. These provide critical insights into effective management of COVID-19, and future break from another pathogen.

19.
PeerJ ; 12: e16699, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38274326

RESUMEN

Background: The change in the soil carbon bank is closely related to the carbon dioxide in the atmosphere, and the vegetation litter input can change the soil organic carbon content. However, due to various factors, such as soil type, climate, and plant species, the effects of vegetation restoration on the soil vary. Currently, research on aggregate-associated carbon has focused on single vegetation and soil surface layers, and the changes in soil aggregate stability and carbon sequestration under different vegetation restoration modes and in deeper soil layers remain unclear. Therefore, this study aimed to explore the differences and relationships between stability and the carbon preservation capacity (CPC) under different vegetation restoration modes and to clarify the main influencing factors of aggregate carbon preservation. Methods: Grassland (GL), shrubland (SL), woodland (WL), and garden plots (GP) were sampled, and they were compared with farmland (FL) as the control. Soil samples of 0-40 cm were collected. The soil aggregate distribution, aggregate-associated organic carbon concentration, CPC, and stability indicators, including the mean weight diameter (MWD), fractal dimension (D), soil erodibility (K), and geometric mean diameter (GMD), were measured. Results: The results showed that at 0-40 cm, vegetation restoration significantly increased the >2 mm aggregate proportions, aggregate stability, soil organic carbon (SOC) content, CPC, and soil erosion resistance. The >2 mm fractions of the GL and SL were at a significantly greater proportion at 0-40 cm than that of the other vegetation types but the CPC was only significantly different between 0 and 10 cm when compared with the other vegetation types (P < 0.05). The >2 mm aggregates showed a significant positive correlation with the CPC, MWD, and GMD (P < 0.01), and there was a significant negative correlation with the D and K (P < 0.05). The SOC and CPC of all the vegetation types were mainly distributed in the 0.25-2 mm and <0.25 mm aggregate fractions. The MWD, GMD, SOC, and CPC all gradually decreased with increasing soil depth. Overall, the effects of vegetation recovery on soil carbon sequestration and soil stability were related to vegetation type, aggregate particle size, and soil depth, and the GL and SL restoration patterns may be more suitable in this study area. Therefore, to improve the soil quality and the sequestration of organic carbon and reduce soil erosion, the protection of vegetation should be strengthened and the policy of returning farmland to forest should be prioritized.


Asunto(s)
Carbono , Suelo , Bosques , Plantas , China
20.
Food Res Int ; 184: 114232, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38609218

RESUMEN

Listeria monocytogenes is a common foodborne pathogen that frequently causes global outbreaks. In this study, the growth characteristics, biofilm formation ability, motility ability and whole genome of 26 L. monocytogenes strains isolated from food and clinical samples in Shanghai (China) from 2020 to 2022 were analyzed. There are significant differences among isolates in terms of growth, biofilm formation, motility, and gene expression. Compared with other sequence type (ST) types, ST1930 type exhibited a significantly higher maximum growth rate, the ST8 type demonstrated a stronger biofilm formation ability, and the ST121 type displayed greater motility ability. Furthermore, ST121 exhibited significantly high mRNA expression levels compared with other ST types in virulence genes mpl, fbpA and fbpB, the quorum sensing gene luxS, starvation response regulation gene relA, and biofilm adhesion related gene bapL. Whole-genome sequencing (WGS) analyses indicated the isolates of lineage I were mostly derived from clinical, and the isolates of lineage II were mostly derived from food. The motility ability, along with the expression of genes associated with motility (motA and motB), exhibited a significantly higher level in lineage II compared with lineage I. The isolates from food exhibited significantly higher motility ability compared with isolates from clinical. By integrating growth, biofilm formation, motility phenotype with molecular and genotyping information, it is possible to enhance comprehension of the association between genes associated with these characteristics in L. monocytogenes.


Asunto(s)
Bagres , Listeria monocytogenes , Animales , China , Listeria monocytogenes/genética , Alimentos , Biopelículas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA