Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Eur Radiol ; 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-37981590

RESUMEN

OBJECTIVES: To compare prostate-specific membrane antigen (PSMA) PET with multiparametric MRI (mpMRI) in the diagnosis of pretreatment prostate cancer (PCa). METHODS: Pubmed, Embase, Medline, Web of Science, and Cochrane Library were searched for eligible studies published before June 22, 2022. We assessed risk of bias and applicability by using QUADAS-2 tool. Data synthesis was performed with Stata 17.0 software, using the "midas" and "meqrlogit" packages. RESULTS: We included 29 articles focusing on primary cancer detection, 18 articles about primary staging, and two articles containing them both. For PSMA PET versus mpMRI in primary PCa detection, sensitivities and specificities in the per-patient analysis were 0.90 and 0.84 (p<0.0001), and 0.66 and 0.60 (p <0.0001), and in the per-lesion analysis they were 0.79 and 0.78 (p <0.0001), and 0.84 and 0.82 (p <0.0001). For the per-patient analysis of PSMA PET versus mpMRI in primary staging, sensitivities and specificities in extracapsular extension detection were 0.59 and 0.66 (p =0.005), and 0.79 and 0.76 (p =0.0074), and in seminal vesicle infiltration (SVI) detection they were 0.51 and 0.60 (p =0.0008), and 0.93 and 0.96 (p =0.0092). For PSMA PET versus mpMRI in lymph node metastasis (LNM) detection, sensitivities and specificities in the per-patient analysis were 0.68 and 0.46 (p <0.0001), and 0.91 and 0.90 (p =0.81), and in the per-lesion analysis they were 0.67 and 0.36 (p <0.0001), and 0.99 and 0.99 (p =0.18). CONCLUSION: PSMA PET has higher diagnostic value than mpMRI in the detection of primary PCa. Regarding the primary staging, mpMRI has potential advantages in SVI detection, while PSMA PET has relative advantages in LNM detection. CLINICAL RELEVANCE STATEMENT: The integration of prostate-specific membrane antigen (PSMA) PET into the diagnostic pathway may be helpful for improving the accuracy of prostate cancer detection. However, further studies are needed to address the cost implications and evaluate its utility in specific patient populations or clinical scenarios. Moreover, we recommend the combination of PSMA PET and mpMRI for cancer staging. KEY POINTS: • Prostate-specific membrane antigen PET has higher sensitivity and specificity for primary tumor detection in prostate cancer compared to multiparametric MRI. • Prostate-specific membrane antigen PET also has significantly better sensitivity and specificity for lymph node metastases of prostate cancer compared to multiparametric MRI. • Multiparametric MRI has better accuracy for extracapsular extension and seminal vesicle infiltration compared to ate-specific membrane antigen PET.

2.
Appl Opt ; 58(19): 5301-5309, 2019 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-31503629

RESUMEN

The optical behavior of twisted nematic liquid crystals (TNLCs) is revealed through an angular scanning technique. Experimental results show that the optical rotation and degree of polarization of transmitted light are dependent on the polarization direction of incident light. The optical rotation is reciprocal, i.e., the polarization direction of incident and transmitted light can reciprocate when optical rotation is π/2. In some cases, the optical rotation is zero. The orientation of alignment layers in the TN cell can be determined from the behavior of optical rotation, which agrees with the measurement by an atomic force microscope. The experimental results are explained with the model of circularly polarized light based on the circular birefringence effect. Linearly polarized incident light is the superposition of right- and left-handed circularly polarized light. The propagation velocity of circularly polarized light in the LC is relevant to the polarization direction of incident light, so that the refractive indices of left- and right-handed circularly polarized light, n- and n+, or circular birefringence Δn(=n--n+) are not constants. As a result, when a linearly polarized light with the wavelength λ propagates through a TN cell with the cell gap l, the polarization direction of transmitted light is rotated to an angle Δθ. The optical rotation Δθ(=π(n--n+)l/λ) is dependent on the polarization direction of incident light, whereas the averaged refractive index ⟨n⟩(=(n-+n+)/2) can be independent of that. The incident light is partially linearly polarized light in our experiments, so that the degree of polarization of transmitted light varies with the polarization direction of incident light because the optical rotatory rates for the primary and secondary light beams are different.

3.
Opt Express ; 26(4): 4288-4299, 2018 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-29475280

RESUMEN

The structures of flexodomains, which are similar to optical gratings and can be controlled by the amplitude of applied voltage and temperature, were verified through polarizing microscopy and light diffraction techniques. The properties of the optical grating induced by a bent-core nematic liquid crystal in planar cells with varied cell gaps and pretilt angles were studied. The period of optical grating decreases with the increase in the amplitude of the applied voltage and pretilt angle. In addition, the period increases with the increase in cell gap and temperature. The period of optical grating has a linear relationship with temperature. The continuously adjustable period has the potential to become an important and extended application of optical grating.


Asunto(s)
Cristales Líquidos/química , Modelos Químicos , Modelos Moleculares , Óptica y Fotónica , Simulación por Computador , Módulo de Elasticidad , Campos Electromagnéticos , Ensayo de Materiales , Refractometría/métodos
4.
Nanomaterials (Basel) ; 8(11)2018 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-30404171

RESUMEN

Improving image sticking in liquid crystal display (LCD) has attracted tremendous interest because of its potential to enhance the quality of the display image. Here, we proposed a method to evaluate the residual direct current (DC) voltage by varying liquid crystal (LC) cell capacitance under the combined action of alternating current (AC) and DC signals. This method was then used to study the improvement of image sticking by doping γ-Fe2O3 nanoparticles into LC materials and adjusting the friction torque difference of the upper and lower substrates. Detailed analysis and comparison of residual characteristics for LC materials with different doping concentrations revealed that the LC material, added with 0.02 wt% γ-Fe2O3 nanoparticles, can absorb the majority of free ions stably, thereby reducing the residual DC voltage and extending the time to reach the saturated state. The physical properties of the LC materials were enhanced by the addition of a small amount of nanoparticles and the response time of doping 0.02 wt% γ-Fe2O3 nanoparticles was about 10% faster than that of pure LC. Furthermore, the lower absolute value of the friction torque difference between the upper and lower substrates contributed to the reduction of the residual DC voltage induced by ion adsorption in the LC cell under the same conditions. To promote the image quality of different display frames in the switching process, we added small amounts of the nanoparticles to the LC materials and controlled friction technology accurately to ensure the same torque. Both approaches were proven to be highly feasible.

5.
Nanomaterials (Basel) ; 8(1)2017 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-29295553

RESUMEN

Image sticking in thin film transistor-liquid crystal displays (TFT-LCD) is related to the dielectric property of liquid crystal (LC) material. Low threshold value TFT LC materials have a weak stability and the free ions in them will be increased because of their own decomposition. In this study, the property of TFT LC material MAT-09-1284 doped with γ-Fe2O3 nanoparticles was investigated. The capacitances of parallel-aligned nematic LC cells and vertically aligned nematic LC cells with different doping concentrations were measured at different temperatures and frequencies. The dielectric constants perpendicular and parallel to long axis of the LC molecules ε⊥ and ε//, as well as the dielectric anisotropy Δε, were obtained. The dynamic responses and the direct current threshold voltages in parallel-aligned nematic LC cells for different doping concentrations were also measured. Although the dielectric anisotropy Δε decreased gradually with increasing temperature and frequency at the certain frequency and temperature in LC state for each concentration, the doping concentration of γ-Fe2O3 nanoparticles less than or equal to 0.145 wt % should be selected for maintaining dynamic response and decreasing free ions. This study has some guiding significance for improving the image sticking in TFT-LCD.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA