Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Appl Environ Microbiol ; 90(4): e0009524, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38497640

RESUMEN

Horizontal gene transfer, facilitated by mobile genetic elements (MGEs), is an adaptive evolutionary process that contributes to the evolution of bacterial populations and infectious diseases. A variety of MGEs not only can integrate into the bacterial genome but also can survive or even replicate like plasmids in the cytoplasm, thus requiring precise and complete removal for studying their strategies in benefiting host cells. Existing methods for MGE removal, such as homologous recombination-based deletion and excisionase-based methods, have limitations in effectively eliminating certain MGEs. To overcome these limitations, we developed the Cas9-NE method, which combines the CRISPR/Cas9 system with the natural excision of MGEs. In this approach, a specialized single guide RNA (sgRNA) element is designed with a 20-nucleotide region that pairs with the MGE sequence. This sgRNA is expressed from a plasmid that also carries the Cas9 gene. By utilizing the Cas9-NE method, both the integrative and circular forms of MGEs can be precisely and completely eliminated through Cas9 cleavage, generating MGE-removed cells. We have successfully applied the Cas9-NE method to remove four representative MGEs, including plasmids, prophages, and genomic islands, from Vibrio strains. This new approach not only enables various investigations on MGEs but also has significant implications for the rapid generation of strains for commercial purposes.IMPORTANCEMobile genetic elements (MGEs) are of utmost importance for bacterial adaptation and pathogenicity, existing in various forms and multiple copies within bacterial cells. Integrated MGEs play dual roles in bacterial hosts, enhancing the fitness of the host by delivering cargo genes and potentially modifying the bacterial genome through the integration/excision process. This process can lead to alterations in promoters or coding sequences or even gene disruptions at integration sites, influencing the physiological functions of host bacteria. Here, we developed a new approach called Cas9-NE, allowing them to maintain the natural sequence changes associated with MGE excision. Cas9-NE allows the one-step removal of integrated and circular MGEs, addressing the challenge of eliminating various MGE forms efficiently. This approach simplifies MGE elimination in bacteria, expediting research on MGEs.


Asunto(s)
Sistemas CRISPR-Cas , ARN Guía de Sistemas CRISPR-Cas , Bacterias/genética , Islas Genómicas , Transferencia de Gen Horizontal , Plásmidos/genética , Secuencias Repetitivas Esparcidas
2.
Microorganisms ; 11(11)2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-38004737

RESUMEN

Many bacteria use the second messenger c-di-GMP to regulate exopolysaccharide production, biofilm formation, motility, virulence, and other phenotypes. The c-di-GMP level is controlled by the complex network of diguanylate cyclases (DGCs) and phosphodiesterases (PDEs) that synthesize and degrade c-di-GMP. In addition to chromosomally encoded DGCs, increasing numbers of DGCs were found to be located on mobile genetic elements. Whether these mobile genetic element-encoded DGCs can modulate the physiological phenotypes in recipient bacteria after horizontal gene transfer should be investigated. In our previous study, a genomic island encoding three DGC proteins (Dgc137, Dgc139, and Dgc140) was characterized in Vibrio alginolyticus isolated from the gastric cavity of the coral Galaxea fascicularis. Here, the effect of the three DGCs in four Pseudoalteromonas strains isolated from coral Galaxea fascicularis and other marine environments was explored. The results showed that when dgc137 is present rather than the three DGC genes, it obviously modulates biofilm formation and bacterial motility in these Pseudoalteromonas strains. Our findings implied that mobile genetic element-encoded DGC could regulate the physiological status of neighboring bacteria in a microbial community by modulating the c-di-GMP level after horizontal gene transfer.

3.
Future Microbiol ; 17: 251-265, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35152710

RESUMEN

Aim: To investigate the function of broad-spectrum racemases in Aeromonas hydrophila (BsrA). Results: The A. hydrophila gene encoding BsrA (bsr) mutants (AHΔbsr) exhibited a significant decrease in growth, motility, extracellular protease production and biofilm formation compared with the wild-type. Furthermore, bsr gene knockout instigated cell wall damage compared with the wild-type strains. The survival rate and replication capability in the blood and organs of the AHΔbsr-infected mice were significantly decreased. The degree of tissue injury in the AHΔbsr-infected group was lower than that of the wild-type-infected group. Moreover, there was a significant decrease in the expression of 12 AHΔbsr virulence genes. Conclusion: The bsr gene is essential for the viability and virulence of A. hydrophila.


Asunto(s)
Aeromonas hydrophila , Infecciones por Bacterias Gramnegativas , Aeromonas hydrophila/genética , Aeromonas hydrophila/metabolismo , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Ratones , Racemasas y Epimerasas/metabolismo , Virulencia/genética , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA