RESUMEN
Methyl iodide (CH3I) gas as a toxic gas causes great harm to organisms due to its high volatility and high reactivity with biological nucleophiles. Unfortunately, the sensing and detection of CH3I gas are challenging because of the diffusive nature of the gases and its low concentrations in the environment. Herein, we have developed a fast, green, and sensitive CH3I gas visual sensing method based on the capture technology of toxic gases by natural deep eutectic solvents (NADESs) coupled to the halide rapid exchange capability of perovskite nanocrystals (PNCs). In this strategy, NADESs are used as an absorption solution to adsorb gaseous CH3I, while simultaneously exposing I- through the action of the nucleophilic reagent; then, CsPbBr3 PNCs were synthesized in NADESs and used as sensing material to achieve I- exchange. Benefiting from the capture and enrichment of CH3I gas, the sensitivity of the gas sensor was highly improved. The sensor exhibited the lowest detection limit (limits of detection) of 164.15 µmol/m3, below the minimum safe level for human inhalation, which is 200 µmol/m3. This breakthrough offers greater possibilities for the quantitative detection of CH3I gas.
RESUMEN
Clinically, a considerable number of non-small cell lung cancer (NSCLC) patients are unable to receive or resist chemotherapy, and the efficacy of non-chemotherapy treatment strategies based on anti-angiogenic agents combined with immune checkpoint blockade is still unsatisfactory. Neoantigen vaccine, based on personalized tumor DNA mutations, could elicit tumor specific T cell infiltration into the tumor site, exerting potent anti-tumor efficacy. Here, we evaluated the feasibility and safety of a new antitumor strategy by adding neoantigen vaccine to the regimen of bevacizumab and anti-PD-1 antibody. Firstly, 7 novel immunogenic neoantigen peptides were identified and developed for neoantigen vaccine (LLCvac), which can elicit strong antitumor immune response in vivo. Then, in orthotopic lung cancer model, LLCvac further combining with bevacizumab and anti-PD-1 antibody exerted a stronger antitumor effect, exhibiting significant decrease of tumor volume without obvious toxicity. Furthermore, tumor immune microenvironment assessment also showed that the proportion of neoantigen-specific T cells in blood could be induced dramatically by the combined therapy. And a large amount of neoantigen-specific Ki67-positive CD8+ T cells were found in tumor tissues, which infiltrated tumor tissues effectively to kill tumor cells expressing identified neoantigens. Overall, these results suggested that this combined therapy could safely induce robust antitumor efficacy, serving as an effective chemotherapy-free strategy for NSCLC treatment.
Asunto(s)
Vacunas contra el Cáncer , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Antígenos de Neoplasias , Bevacizumab/uso terapéutico , Vacunas contra el Cáncer/farmacología , Vacunas contra el Cáncer/uso terapéutico , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Linfocitos T CD8-positivos , Neoplasias Pulmonares/tratamiento farmacológico , Microambiente TumoralRESUMEN
The conversion of Li2S4 to Li2S is the most important and slowest rate-limiting step in the complex sulfur reduction reaction (SRR) for Li-S batteries, the adjustment of which can effectively inhibit the notorious "shuttle effect". Herein, a CoSe2-FeSe2 heterostructure embedded in 3D N-doped nanocage as a modified layer on commercial separator is designed (CoSe2-FeSe2@NC//PP). The CoSe2-FeSe2 heterostructure forms a built-in electric field at the two-phase interface, which leads to the optimized adsorption force on polysulfides and the accelerated reaction kinetics for Li2S4-Li2S evolution. Density functional theory (DFT) calculations and experimental results combine to show that the liquid-solid reaction (Li2S4-Li2S2/Li2S) is significantly enhanced in terms of thermodynamics and electrodynamics. Consequently, the batteries assembled with CoSe2-FeSe2@NC//PP delivered an excellent rate capability (606 mAh g-1 under 8.0 C) and a long cycling lifespan (only 0.056% at 1.0 C after 1000 cycles). In addition, the cells can provide high initial capacity of 887 mAh g-1 at sulfur loading of 5.8 mg cm-2 and 0.1 C. This work would provide valuable insights into binary metal selenide heterostructures for liquid-solid conversion in Li-S batteries.
RESUMEN
Electrochemiluminescence (ECL) featuring thermally activated delayed fluorescence (TADF) properties has attracted considerable interest, showcasing their potential for 100 % exciton harvesting, which marks a significant advancement in the realm of organic ECL. However, the challenge of elucidating the precise contribution of TADF to the enhanced ECL efficiency arises due to the lack of comparative studies of organic compounds with or without efficient TADF properties. In this study, we present four carbazole-benzonitrile molecules possessing similar chemical structures and comparable exchange energy (ΔEST). Despite their comparable properties, these compounds exhibited varying TADF efficiencies, warranting a closer examination of their underlying structural and electronic characteristics governing the optical properties. Consequently, intense ECL emission was only observed from 4CzBN with a remarkable TADF efficiency, underscoring the substantial difference in the ECL signal among molecules with comparable ΔEST and similar spectral properties but varying TADF activity.
RESUMEN
BACKGROUND: Pulmonary hypertension (PH) is associated with increased expression of VEGF-A (vascular endothelial growth factor A) and its receptor, VEGFR2 (vascular endothelial growth factor 2), but whether and how activation of VEGF-A signal participates in the pathogenesis of PH is unclear. METHODS: VEGF-A/VEGFR2 signal activation and VEGFR2 Y949-dependent vascular leak were investigated in lung samples from patients with PH and mice exposed to hypoxia. To study their mechanistic roles in hypoxic PH, we examined right ventricle systolic pressure, right ventricular hypertrophy, and pulmonary vasculopathy in mutant mice carrying knock-in of phenylalanine that replaced the tyrosine at residual 949 of VEGFR2 (Vefgr2Y949F) and mice with conditional endothelial deletion of Vegfr2 after chronic hypoxia exposure. RESULTS: We show that PH leads to excessive pulmonary vascular leak in both patients and hypoxic mice, and this is because of an overactivated VEGF-A/VEGFR2 Y949 signaling axis. In the context of hypoxic PH, activation of Yes1 and c-Src and subsequent VE-cadherin phosphorylation in endothelial cells are involved in VEGFR2 Y949-induced vascular permeability. Abolishing VEGFR2 Y949 signaling by Vefgr2Y949F point mutation was sufficient to prevent pulmonary vascular permeability and inhibit macrophage infiltration and Rac1 activation in smooth muscle cells under hypoxia exposure, thereby leading to alleviated PH manifestations, including muscularization of distal pulmonary arterioles, elevated right ventricle systolic pressure, and right ventricular hypertrophy. It is important that we found that VEGFR2 Y949 signaling in myeloid cells including macrophages was trivial and dispensable for hypoxia-induced vascular abnormalities and PH. In contrast with selective blockage of VEGFR2 Y949 signaling, disruption of the entire VEGFR2 signaling by conditional endothelial deletion of Vegfr2 promotes the development of PH. CONCLUSIONS: Our results support the notion that VEGF-A/VEGFR2 Y949-dependent vascular permeability is an important determinant in the pathogenesis of PH and might serve as an attractive therapeutic target pathway for this disease.
Asunto(s)
Permeabilidad Capilar , Hipertensión Pulmonar , Factor A de Crecimiento Endotelial Vascular , Receptor 2 de Factores de Crecimiento Endotelial Vascular , Animales , Ratones , Permeabilidad Capilar/fisiología , Células Endoteliales/metabolismo , Hipertensión Pulmonar/complicaciones , Hipertensión Pulmonar/metabolismo , Hipertensión Pulmonar/fisiopatología , Hipertrofia Ventricular Derecha/etiología , Hipoxia/complicaciones , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismoRESUMEN
INTRODUCTION: Current guidelines suggest that regular aerobic training might lower blood pressure in hypertensive individuals. However, evidence linking resistant hypertension (RH) with total daily physical activity (PA), including work-, transport-, and recreation-related PA, is limited. Therefore, this study assessed the association between daily PA and RH. METHOD: A cross-sectional study was conducted using data acquired from a nationwide survey in the US (the National Health and Nutrition Examination Survey, NHANES). The weighted prevalence of RH was calculated, and moderate and vigorous daily PA was assessed using the Global Physical Activity Questionnaire (GPAQ). A multivariate logistic regression model determined the association between daily PA and RH. RESULTS: A total of 8,496 treated hypertension patients were identified, including 959 RH cases. The unweighted prevalence of RH among treated hypertension cases was 11.28%, while the weighted prevalence was 9.81%. Participants with RH had a low rate of recommended PA levels (39.83%), and daily PA and RH were significantly associated. PA exhibited significant dose-dependent trends with a low probability of RH (p-trends < 0.05). Additionally, participants with sufficient daily PA had a 14% lower probability of RH than those with insufficient PA [fully adjusted odds ratio (OR) = 0.86; 95% confidence interval (CI) = 0.74-0.99). CONCLUSION: The present study revealed that RH has an incidence of up to 9.81% in treated hypertension patients. Hypertensive patients tended to be physically inactive, and insufficient PA and RH were significantly associated. Sufficient daily PA should be recommended to reduce the RH probability among treated hypertension patients.
Asunto(s)
Hipertensión , Humanos , Encuestas Nutricionales , Estudios Transversales , Hipertensión/diagnóstico , Hipertensión/epidemiología , Hipertensión/terapia , Ejercicio Físico/fisiología , Presión SanguíneaRESUMEN
The spatial arrangement of molecules plays a crucial role in determining the macroscopic properties of functional materials. Coordinated polymers (CPs) formed by self-assembly of organic isomeric ligands and metals offer unique performance characteristics. In this study, we present the investigation of a one-dimensional CP, named CIT-E, composed of tetraphenylethene pyridine derivative (TPE-2by-2-E) ligands and copper iodide. The resulting CP exhibits a one-dimensional bead chain structure with exceptional thermal and chemical stability. By leveraging the competitive absorption between CIT-E and the explosive analog 2,4-dinitroaniline, we achieve detection of the explosive through changes in the absorption intensity of the excitation light source and subsequent fluorescence response. The CP demonstrates high selectivity and anti-interference ability in detecting 2,4-dinitroaniline in aqueous solution, with a detection linear range of 0.1 to 300 µM and a detection limit of 0.05 µM, surpassing the national third-level emission standard. These findings highlight the potential of CP CIT-E as a promising material for the detection of explosive nitroaromatic compounds.
Asunto(s)
Sustancias Explosivas , Sustancias Explosivas/química , Polímeros/química , Fluorescencia , Cobre , Yoduros , PiridinasRESUMEN
Herein, we integrate the Hepa1-6 liver cancer-specific neoantigen, toll-like receptor 9 agonist and stimulator of interferon genes agonist by silk-hydrogel package, and combine with TIM-3 blockade to elicit robust antitumor immunity for effectively suppressing orthotopic hepatocellular carcinoma (HCC) progression. Unlike intradermal injection of simple mixed components with short-term immune protection, the neoantigen immunotherapeutic-gels evoke long-term immune protection to achieve significant prophylactic and therapeutic activity against HCC through only one-shot administration without any side effects. Notably, the synergized immunotherapy by further combining NGC-gels with TIM-3 antibody significantly reduces regulatory T-cells and increases the IFN-γ and IL-12p70 levels in tumor tissues for promoting the infiltration of IFN-γ+CD8+T-cells and 41BB+CD8+T-cells to achieve complete remission (4/7) and prevent pulmonary metastasis in orthotopic HCC, and establish long-term memory against tumor rechallenge with remarkably longer survival time (180 days). Overall, this study provides an attractive and promising synergistic strategy for HCC immunotherapy with possible clinical translation prospects.
Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Linfocitos T CD8-positivos , Carcinoma Hepatocelular/tratamiento farmacológico , Geles , Receptor 2 Celular del Virus de la Hepatitis A , Humanos , Inmunoterapia , Neoplasias Hepáticas/tratamiento farmacológicoRESUMEN
Aza-helicenes are one of the most important series of heterohelicenes; herein, a series of novel aza-helicenes (5H, 6H, 6S, and 8S) were prepared via Bischler-Napieralski cyclization, and the interconversion dynamic process of these aza-helicenes was revealed using density functional theory calculations. The novel nitrogen-doped [6]helicene (6H) possesses a very high interconversion energy barrier of 36.0 kcal/mol. Two enantiomers of 6H were successfully resolved by high-performance liquid chromatography and showed desired chiral optical properties. 6H with chiral optical activity and lone electrons can be a potential candidate for chiral switches, which was demonstrated using the UV and circular dichroism spectra obtained upon titration with an acid and a base.
RESUMEN
INTRODUCTION: Acute heart failure is a serious condition. Atrial fibrillation is the most frequent arrhythmia in patients with acute heart failure. The occurrence of atrial fibrillation in heart failure patients worsens their prognosis and leads to a substantial increase in treatment costs. There is no tool that can effectively predict the onset of atrial fibrillation in patients with acute heart failure in the ICU currently. MATERIALS AND METHODS: We retrospectively analyzed the MIMIC-IV database of patients admitted to the intensive care unit (ICU) for acute heart failure and who were initially sinus rhythm. Data on demographics, comorbidities, laboratory findings, vital signs, and treatment were extracted. The cohort was divided into a training set and a validation set. Variables selected by LASSO regression and multivariate logistic regression in the training set were used to develop a model for predicting the occurrence of atrial fibrillation in acute heart failure in the ICU. A nomogram was drawn and an online calculator was developed. The discrimination and calibration of the model was evaluated. The performance of the model was tested using the validation set. RESULTS: This study included 2342 patients with acute heart failure, 646 of whom developed atrial fibrillation during their ICU stay. Using LASSO and multiple logistic regression, we selected six significant variables: age, prothrombin time, heart rate, use of vasoactive drugs within 24 h, Sequential Organ Failure Assessment (SOFA) score, and Acute Physiology Score (APS) III. The C-index of the model was 0.700 (95% CI 0.672-0.727) and 0.682 (95% CI 0.639-0.725) in the training and validation sets, respectively. The calibration curves also performed well in both sets. CONCLUSION: We developed a simple and effective model for predicting atrial fibrillation in patients with acute heart failure in the ICU.
Asunto(s)
Fibrilación Atrial , Insuficiencia Cardíaca , Humanos , Fibrilación Atrial/diagnóstico , Fibrilación Atrial/epidemiología , Estudios Retrospectivos , Insuficiencia Cardíaca/diagnóstico , Insuficiencia Cardíaca/epidemiología , Unidades de Cuidados IntensivosRESUMEN
BACKGROUND: Clinically, prophylactic anti-recurrence treatments for hepatocellular carcinoma (HCC) patients after radical surgery are extremely limited. Neoantigen based vaccine can generate robust anti-tumor immune response in several solid tumors but whether it could induce anti-tumor immune response in HCC and serve as a safe and effective prophylactic strategy for preventing postoperative HCC recurrence still remain largely unclear. METHODS: Personalized neoantigen vaccine was designed and immunized for 10 HCC patients with high risk of postoperative recurrence in a prime-boost schedule. The safety and immune response were assessed through adverse events, tissue sequencing, ELISpot, TCR sequencing. The clinical response was evaluated by recurrence-free survival (RFS) and personalized circulating tumor DNA (ctDNA) sequencing. RESULTS: In the 10 enrolled patients, no obvious adverse events were observed during neoantigen vaccinations. Until the deadline of clinical trial, 8 of 10 patients were confirmed with clinical relapse by imaging, the other 2 patients remained relapse-free. From receiving first neoantigen vaccination, the median RFS of 10 patients were 7.4 months. Among 7 patients received all planned neoantigen vaccinations, 5 of them demonstrated neoantigen-induced T cell responses and have significantly longer RFS after radical surgery than other 5 patients without responsive neoantigens or only with prime vaccination and propensity scores matching control patients (p = 0.035). Moreover, tracking personalized neoantigen mutations in ctDNA could provide real-time evaluation of clinical response in HCC patients during neoantigen vaccination and follow up. CONCLUSION: Personalized neoantigen vaccine is proved as a safe, feasible and effective strategy for HCC anti-recurrence, and its progression could be sensitively monitored by corresponding neoantigen mutations in ctDNA, and thus provided solid information for individualized medicine in HCC. TRIAL REGISTRATION: This study was registered at Chinese Clinical Trial Registry; Registration number: ChiCTR1900020990 .
Asunto(s)
Antígenos de Neoplasias , Vasos Sanguíneos/patología , Vacunas contra el Cáncer/uso terapéutico , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/terapia , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/terapia , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/inmunología , Vacunas contra el Cáncer/inmunología , Terapia Combinada , Diagnóstico por Imagen , Hepatectomía , Humanos , Mutación , Invasividad Neoplásica , Recurrencia Local de Neoplasia , Medicina de Precisión/métodos , Resultado del Tratamiento , Vacunación , Vacunas de SubunidadRESUMEN
The long reads of Nanopore sequencing permit accurate transcript assembly and ease in discovering novel transcripts with potentially important functions in cancers. The wide adoption of Nanopore sequencing for transcript quantification, however, is largely limited by high costs. To address this issue, we developed a bioinformatics software, NovelQuant, that can specifically quantify long-read-assembled novel transcripts with short-read sequencing data. Nanopore Direct RNA Sequencing was carried out on three hepatocellular carcinoma (HCC) patients' tumor, matched portal vein tumor thrombus, and peritumor to reconstruct the HCC transcriptome. Then, based on the reconstructed transcriptome, NovelQuant was applied on Illumina RNA sequencing data of 59 HCC patients' tumor and paired peritumor to quantify novel transcripts. Our further analysis revealed 361 novel transcripts dysregulated in HCC and that 101 of them were significantly associated with prognosis. There were 19 novel prognostic transcripts predicted to be long noncoding RNAs (lncRNAs), and some of them had regulatory targets that were reported to be associated with HCC. Additionally, 42 novel prognostic transcripts were predicted to be protein-coding mRNAs, and many of them could be involved in xenobiotic metabolism. Moreover, the tumor-suppressive roles of two representative novel prognostic transcripts, CDO1-novel (lncRNA) and CYP2A6-novel (protein-coding mRNA), were further functionally validated during HCC progression. Overall, the current study shows a possibility of combining long- and short-read sequencing to explore functionally important novel transcripts in HCC with accuracy and cost-efficiency, which expands the pool of molecular biomarkers that could enhance our understanding of the molecular mechanisms of HCC.
Asunto(s)
Carcinoma Hepatocelular/genética , Exactitud de los Datos , Neoplasias Hepáticas/genética , Secuenciación de Nanoporos/métodos , Análisis de Secuencia de ARN/métodos , Transcriptoma , Anciano , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/cirugía , Biología Computacional/métodos , Progresión de la Enfermedad , Femenino , Perfilación de la Expresión Génica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/cirugía , Masculino , Persona de Mediana Edad , Pronóstico , ARN Largo no Codificante/genética , ARN Mensajero/genética , Programas InformáticosRESUMEN
Azodicarbonamide (ADA), as a dough conditioner food additive in flour, can be turned into toxic biurea and semicarbazide after high temperature processing. Hence, the using of ADA in food material should be strictly controlled, and the detection of ADA is very important for consumers' safety and health. Herein, a simple and fast colorimetric strategy has been developed for ADA detection based on the MnO2 nanosheets-3,3',5,5'-tetramethylbenzidine (TMB)-glutathione (GSH) as oxidative sensing system (MnO2-TMB-GSH). Since the ADA can selectively react with GSH via oxidizing the sulfydryl (-SH) group of GSH to disulfide bond (S-S), which makes GSH unable to reduce MnO2 nanosheets and restore its oxidase-like activity. The absorbance changes of the TMB solution depended on ADA content. The MnO2-TMB-GSH colorimetric platform can detect the ADA with a linear range of 10 µmol L-1 (11.6 ppm) to 400 µmol L-1 (464 ppm), and the limit of detection (LOD) is 3.3 µmol L-1 (3.51 ppm). Some potential interferences in real sample were tested and did not affect the MnO2-TMB-GSH colorimetric platform for ADA detection. Furthermore, the sensing platform was applied for detecting ADA in real flour sample with a recovery of 96%-105% (RSD < 5%). This colorimetric method can effectively and rapidly detect ADA additives in flour less than the prescribed standard (45 mg kg-1), which shows a great potential for visualization analysis and on-site detection of ADA in flour. A simple and fast colorimetric strategy has been developed for azodicarbonamide (ADA) detection based on the MnO2 nanosheets-3,3',5,5'-tetramethylbenzidine (TMB)-glutathione (GSH) as oxidative sensing system (MnO2-TMB-GSH).
RESUMEN
OBJECTIVE: Neoantigens derived from tumor-specific genomic alterations have demonstrated great potential for immunotherapeutic interventions in cancers. However, the comprehensive profile of hepatocellular carcinoma (HCC) neoantigens and their complex interplay with immune microenvironment and tumor evolution have not been fully addressed. METHODS: Here we integrated whole exome sequencing data, transcriptome sequencing data and clinical information of 72 primary HCC patients to characterize the HCC neoantigen profile, and systematically explored its interactions with tumor clonal evolution, driver mutations and immune microenvironments. RESULTS: We observed that higher somatic mutation/neoantigen load was associated with better clinical outcomes and HCC patients could be further divided into two subgroups with distinct prognosis based on their neoantigen expression patterns. HCC subgroup with neoantigen expression probability high (NEP-H) showed more aggressive pathologic features including increased incidence of tumor thrombus (P=0.038), higher recurrence rate (P=0.029), more inclined to lack tumor capsule (P=0.026) and with more microsatellite instability sites (P=0.006). In addition, NEP-H subgroup was also characterized by higher chance to be involved in tumor clonal evolution [odds ratio (OR)=46.7, P<0.001]. Gene set enrichment analysis revealed that upregulation of MYC and its targets could suppress immune responses, leading to elevated neoantigen expression proportion in tumor cells. Furthermore, we discovered an immune escape mechanism that tumors could become more inconspicuous by evolving subclones with less immunogenicity. We observed that smaller clonal mutation clusters with higher immunogenicity in tumor were more likely to involve in clonal evolution. Based on identified neoantigen profiles, we also discovered series of neoantigenic hotspot genes, which could serve as potential actionable targets in future. CONCLUSIONS: Our results revealed the landscape of HCC neoantigens and discovered two clinically relevant subgroups with distinct neoantigen expression patterns, suggesting the neoantigen expression should be fully considered in future immunotherapeutic interventions.
RESUMEN
BACKGROUND: Most electrocardiogram (ECG) studies still take advantage of traditional statistical functions, and the results are mostly presented in tables, histograms, and curves. Few papers display ECG data by visual means. The aim of this study was to analyze and show data for electrocardiographic left ventricular hypertrophy (LVH) with ST-segment elevation (STE) by a heat map in order to explore the feasibility and clinical value of heat mapping for ECG data visualization. METHODS: We sequentially collected the electrocardiograms of inpatients in the First Affiliated Hospital of Shantou University Medical College from July 2015 to December 2015 in order to screen cases of LVH with STE. HemI 1.0 software was used to draw heat maps to display the STE of each lead of each collected ECG. Cluster analysis was carried out based on the heat map and the results were drawn as tree maps (pedigree maps) in the heat map. RESULTS: In total, 60 cases of electrocardiographic LVH with STE were screened and analyzed. STE leads were mainly in the V1, V2 and V3 leads. The ST-segment shifts of each lead of each collected ECG could be conveniently visualized in the heat map. According to cluster analysis in the heat map, STE leads were clustered into two categories, comprising of the right precordial leads (V1, V2, V3) and others (V4, V5, V6, I, II, III, aVF, aVL, aVR). Moreover, the STE amplitude in 40% (24 out of 60) of cases reached the threshold specified in the STEMI guideline. These cases also could be fully displayed and visualized in the heat map. Cluster analysis in the heat map showed that the III, aVF and aVR leads could be clustered together, the V1, V2, V3 and V4 leads could be clustered together, and the V5, V6, I and aVL leads could be clustered together. CONCLUSION: Heat maps and cluster analysis can be used to fully display every lead of each electrocardiogram and provide relatively comprehensive information.
Asunto(s)
Presentación de Datos , Electrocardiografía , Hipertrofia Ventricular Izquierda/diagnóstico , Procesamiento de Señales Asistido por Computador , Potenciales de Acción , Análisis por Conglomerados , Estudios de Factibilidad , Frecuencia Cardíaca , Humanos , Hipertrofia Ventricular Izquierda/fisiopatología , Valor Predictivo de las PruebasRESUMEN
Plasmonic nanostructures have been broadly used for chemical detections, but their applications are limited by slow detection rates, insufficient visual resolution and sensitivity due to the chemical and structural stability of conventional plasmonic nanomaterials. It is thus essential to develop strategies to enhance the detection kinetics while promoting their excellent plasmonic properties. In this work, a colorimetric assay for HCHO measurement is developed based on the fact that HCHO can react with Tollens' reagent to anisotropically deposit a layer of silver shells onto the bone-shaped gold nanorod (Au NR) cores. Compared to the routine rod-shaped Au NRs, the bone-shaped Au NRs facilitate the deposition of Ag onto the sunken section due to their unique concave structures, giving rise to fast reaction kinetics and detection rate. It is also important to point out that the surface ligand exchange from CTAB to CTAC is helpful to accelerate the deposition of silver onto Au NRs, which significantly shortens the reaction time. The preferential deposition of Ag on the concave Au NRs induces more dramatic morphology changes and therefore promotes the plasmonic shift of the bone-shaped Au NRs and improves the sensing efficiency. Correspondingly, the apparent color of the solution changes from light gray to dark blue, purple, red, orange and finally to yellow as the longitudinal localized surface plasmon resonance (LSPR) band shifts from 710 to 500 nm along with the emergence of a new LSPR band at 400 nm almost covering the full visible region. The colorimetric method developed enables sensitive detection of HCHO with a low detection limit (1 nM), wide linear range (0.1-50 µM), high visual resolution and good specificity against other common indoor gases. It was successfully applied to the detection of gaseous HCHO present in the air collected from a furniture plaza, showing its potential practicality for on-site HCHO analysis.
Asunto(s)
Contaminantes Atmosféricos/análisis , Cetrimonio/química , Formaldehído/análisis , Oro/química , Nanotubos/química , Hidróxido de Amonio/química , Anisotropía , Colorimetría/métodos , Límite de Detección , Nitrato de Plata/química , Resonancia por Plasmón de Superficie/métodosRESUMEN
To investigate tumor clonal evolution in hepatocellular carcinoma (HCC), we collected 31 tumor samples,16 peritumor samples and matched PBMCs from 11 long-term follow-up patients with HCC. Whole-exome sequencing was performed to obtain SNVs and CNVs for each sample. An average of 652.2 somatic mutations were identified in each patient and the mean percentage of nonubiquitous tumor mutations was 63.7% (range, 0.7%-100%), reflecting the variety of tumor heterogeneity. Further analysis of clonal evolution was conducted based on mutation clustering results and revealed that different clonal evolution patterns indeed existed in single and multifocal HCC while these patterns were significantly correlated to patients' clinical course. These patterns clearly demonstrated different mechanisms of tumor recurrence. During tumor clonal evolution, potential therapeutic targets also emerged and vanished dynamically. Moreover, mutation analysis revealed that the contribution of mutational signature was correlated with clonal evolution history. Target sequencing of follow-up plasma samples also confirmed that ctDNA level could dynamically reflect tumor clonal/subclonal burden. By investigating clonal evolution in HCC patients, our analysis revealed that different patterns indeed existed during HCC progression and proposed a novel strategy for identifying the origin of recurrent tumor as well as optimizing treatment selection.
Asunto(s)
Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Evolución Clonal/genética , Evolución Clonal/fisiología , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Análisis Mutacional de ADN/métodos , Progresión de la Enfermedad , Exoma/genética , Estudios de Seguimiento , Humanos , Mutación/genética , Recurrencia Local de Neoplasia/genética , Recurrencia Local de Neoplasia/patología , Secuenciación del ExomaRESUMEN
BACKGROUND/AIMS: Aberrant RNA editing, mediated by adenosine deaminases acting on RNA (ADAR), serves as a post-transcriptional event participating in tumorigenesis and prognosis. However, the RNA editing profiles during HCC progression and their clinical correlations remain unclear. METHODS: Multiple tissue samples were collected from an advanced HCC patient. RNA-seq was performed to obtain the RNA editing profiles for each sample. Two RNA editing sites from CDK13 were further validated in 60 HCC patients; and their potential regulatory mechanisms were investigated. RESULTS: In-depth analysis of the RNA-seq data revealed a significant number of editing sites (632-816) in coding regions for each tissue sample, showing branched evolution during tumorigenesis and metastasis. Two editing sites (Q103R and K96R) in CDK13 showed significant over-editing in tumor, and these phenomenon were validated in 60 HCC patients. Furthermore, the clinicopathological analysis revealed that these CDK13 over-editing sites were positively associated with TNM, PVTT and poor prognosis. In addition, the editing level of these sites were significantly correlated with the expression of ADAR1. Loss of function assays further proved that these CDK13 over-editing sites were mediated by ADAR1 in HCC cells. CONCLUSIONS: CDK13 RNA over-editing sites mediated by ADAR1 may serve as novel cancer driver events in HCC progression.
Asunto(s)
Adenosina Desaminasa/metabolismo , Proteína Quinasa CDC2/metabolismo , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Proteínas de Neoplasias/metabolismo , Edición de ARN , Proteínas de Unión al ARN/metabolismo , Adenosina Desaminasa/genética , Proteína Quinasa CDC2/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Femenino , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Masculino , Proteínas de Neoplasias/genética , Proteínas de Unión al ARN/genéticaRESUMEN
Circulating tumor DNA (ctDNA) provides a potential non-invasive biomarker for cancer diagnosis and prognosis, but whether it could reflect tumor heterogeneity and monitor therapeutic responses in hepatocellular carcinoma (HCC) is unclear. Focusing on 574 cancer genes known to harbor actionable mutations, we identified the mutation repertoire of HCC tissues, and monitored the corresponding ctDNA features in blood samples to evaluate its clinical significance. Analysis of 3 HCC patients' mutation profiles revealed that ctDNA could overcome tumor heterogeneity and provide information of tumor burden and prognosis. Further analysis was conducted on the 4th HCC case with multiple lesion samples and sequential plasma samples. We identified 160 subclonal SNVs in tumor tissues as well as matched peritumor tissues with PBMC as control. 96.9% of this patient's tissue mutations could be also detected in plasma samples. These subclonal SNVs were grouped into 9 clusters according to their trends of cellular prevalence shift in tumor tissues. Two clusters constituted of tumor stem somatic mutations showed circulating levels relating with cancer progression. Analysis of tumor somatic mutations revealed that circulating level of such tumor stem somatic mutations could reflect tumor burden and even predict prognosis earlier than traditional strategies. Furthermore, HCK (p.V174M), identified as a recurrent/metastatic related mutation site, could promote migration and invasion of HCC cells. Taken together, study of mutation profiles in biopsy and plasma samples in HCC patients showed that ctDNA could overcome tumor heterogeneity and real-time track the therapeutic responses in the longitudinal monitoring.
Asunto(s)
Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , ADN de Neoplasias/sangre , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Adulto , Anciano , Biomarcadores de Tumor/sangre , Carcinoma Hepatocelular/sangre , Evolución Clonal/genética , Análisis Mutacional de ADN , Progresión de la Enfermedad , Femenino , Humanos , Neoplasias Hepáticas/sangre , Masculino , Persona de Mediana Edad , Células Neoplásicas Circulantes/patologíaRESUMEN
Nanoplatform integrated with photothermal therapy (PTT) and chemotherapy has been recognized a promising agent for enhancing cancer therapeutic outcomes, but still suffer from less controllability for optimizing their synergistic effects. We fabricated glutathione (GSH) responsive micelles incorporated with semiconducting polymer dots and doxorubicin (referred as SPDOX NPs) for combining PTT with chemotherapy to enhance cancer therapeutic efficiency. These micelles, with excellent water dispersibility, comprises of three distinct functional components: (1) the monomethoxy-poly(ethylene glycol)-S-S-hexadecyl (mPEG-S-S-C16), which forms the micelles, can render hydrophobic substances water-soluble and improve the colloidal stability; (2) disulfide linkages can be cleaved in a reductive environment for tumor specific drug release due to the high GSH concentrations of tumor micro-environment; (3) PCPDTBT dots and anti-cancer drug DOX that are loaded inside the hydrophobic core of the micelle can be applied to simultaneously perform PTT and chemotherapy to achieve significantly enhanced tumor killing efficiency both in vitro and in vivo. In summary, our studies demonstrated that our SPDOX NPs with simultaneous photothermal-chemotherapy functions could be a promising platform for a tumor specific responsive drug delivery system.