Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Biol Macromol ; 273(Pt 2): 132951, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38848851

RESUMEN

The current work focuses on developing nanocomposite films using taro starch and cellulose nanofibers extracted from the root's peel. Films were prepared using mixtures of starch, cellulose nanofibers (0 %, 5 %, 10 %, and 15 % w/w), glycerol, and water. Results showed that the addition of cellulose nanofibers increased film thickness, opacity, UV-light barrier capacity, and water swelling percentage. All films showed a typical B-type X-ray diffraction pattern characteristic of semicrystalline materials. FTIR analysis confirmed chemical interactions between the starch chains and the nanofibers, which probably interact through hydrogen bonds. Nanocomposite films exhibited increased tensile strength and reduced strain at break compared to control materials. Films with cellulose nanofibers showed an increase in Young's modulus compared to control ones, with no differences observed between films with cellulose nanofibers at 10 % and 15 %. Furthermore, films with cellulose nanofibers at 5 % and 10 % exhibited lower water vapor permeability than control samples, while those with cellulose nanofibers at 15 % showed an increase in this parameter compared to other materials. These results suggest that incorporating taro cellulose nanofibers is a promising alternative for obtaining taro starch nanocomposites films with improved properties.


Asunto(s)
Celulosa , Nanocompuestos , Nanofibras , Permeabilidad , Almidón , Nanofibras/química , Nanocompuestos/química , Celulosa/química , Almidón/química , Resistencia a la Tracción , Vapor , Agua/química , Difracción de Rayos X
2.
Food Res Int ; 168: 112728, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37120194

RESUMEN

The anti-solvent precipitation method has been investigated to produce biopolymeric nanoparticles in recent years. Biopolymeric nanoparticles have better water solubility and stability when compared with unmodified biopolymers. This review article focuses on the analysis of the state of the art available in the last ten years about the production mechanism and biopolymer type, as well as the used of these nanomaterials to encapsulate biological compounds, and the potential applications of biopolymeric nanoparticles in food sector. The revised literature revealed the importance to understand the anti-solvent precipitation mechanism since biopolymer and solvent types, as well as anti-solvent and surfactants used, can alter the biopolymeric nanoparticles properties. In general, these nanoparticles have been produced using polysaccharides and proteins as biopolymers, especially starch, chitosan and zein. Finally, it was identified that those biopolymers produced by anti-solvent precipitation were used to stabilize essential oils, plant extracts, pigments, and nutraceutical compounds, promoting their application in functional foods.


Asunto(s)
Quitosano , Nanopartículas , Solventes , Proteínas , Almidón
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA