Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phys Rev Lett ; 126(12): 123402, 2021 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-33834818

RESUMEN

We demonstrate the coherent creation of a single NaCs molecule in its rotational, vibrational, and electronic (rovibronic) ground state in an optical tweezer. Starting with a weakly bound Feshbach molecule, we locate a two-photon transition via the |c^{3}Σ_{1},v^{'}=26⟩ excited state and drive coherent Rabi oscillations between the Feshbach state and a single hyperfine level of the NaCs rovibronic ground state |X^{1}Σ,v^{''}=0,N^{''}=0⟩ with a binding energy of D_{0}=h×147044.63(11) GHz. We measure a lifetime of 3.4±1.6 s for the rovibronic ground state molecule, which possesses a large molecule-frame dipole moment of 4.6D and occupies predominantly the motional ground state. These long-lived, fully quantum-state-controlled individual dipolar molecules provide a key resource for molecule-based quantum simulation and information processing.

2.
Phys Rev Lett ; 126(17): 171301, 2021 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-33988453

RESUMEN

We use our recent electric dipole moment (EDM) measurement data to constrain the possibility that the HfF^{+} EDM oscillates in time due to interactions with candidate dark matter axionlike particles (ALPs). We employ a Bayesian analysis method which accounts for both the look-elsewhere effect and the uncertainties associated with stochastic density fluctuations in the ALP field. We find no evidence of an oscillating EDM over a range spanning from 27 nHz to 400 mHz, and we use this result to constrain the ALP-gluon coupling over the mass range 10^{-22}-10^{-15} eV. This is the first laboratory constraint on the ALP-gluon coupling in the 10^{-17}-10^{-15} eV range, and the first laboratory constraint to properly account for the stochastic nature of the ALP field.

3.
Phys Rev Lett ; 124(25): 253401, 2020 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-32639768

RESUMEN

We demonstrate the formation of a single NaCs molecule in an optical tweezer by magnetoassociation through an s-wave Feshbach resonance at 864.11(5) G. Starting from single atoms cooled to their motional ground states, we achieve conversion efficiencies of 47(1)%, and measure a molecular lifetime of 4.7(7) ms. By construction, the single molecules are predominantly [77(5)%] in the center-of-mass motional ground state of the tweezer. Furthermore, we produce a single p-wave molecule near 807 G by first preparing one of the atoms with one quantum of motional excitation. Our creation of a single weakly bound molecule in a designated internal state in the motional ground state of an optical tweezer is a crucial step towards coherent control of single molecules in optical tweezer arrays.

4.
Phys Rev Lett ; 124(5): 053201, 2020 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-32083904

RESUMEN

Cold molecules provide an excellent platform for quantum information, cold chemistry, and precision measurement. Certain molecules have enhanced sensitivity to beyond standard model physics, such as the electron's electric dipole moment (eEDM). Molecular ions are easily trappable and are therefore particularly attractive for precision measurements where sensitivity scales with interrogation time. Here, we demonstrate a spin precession measurement with second-scale coherence at the quantum projection noise (QPN) limit with hundreds of trapped molecular ions, chosen for their sensitivity to the eEDM rather than their amenability to state control and readout. Orientation-resolved resonant photodissociation allows us to simultaneously measure two quantum states with opposite eEDM sensitivity, reaching the QPN limit and fully exploiting the high count rate and long coherence.

5.
Phys Rev Lett ; 119(15): 153001, 2017 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-29077451

RESUMEN

We describe the first precision measurement of the electron's electric dipole moment (d_{e}) using trapped molecular ions, demonstrating the application of spin interrogation times over 700 ms to achieve high sensitivity and stringent rejection of systematic errors. Through electron spin resonance spectroscopy on ^{180}Hf^{19}F^{+} in its metastable ^{3}Δ_{1} electronic state, we obtain d_{e}=(0.9±7.7_{stat}±1.7_{syst})×10^{-29} e cm, resulting in an upper bound of |d_{e}|<1.3×10^{-28} e cm (90% confidence). Our result provides independent confirmation of the current upper bound of |d_{e}|<9.4×10^{-29} e cm [J. Baron et al., New J. Phys. 19, 073029 (2017)NJOPFM1367-263010.1088/1367-2630/aa708e], and offers the potential to improve on this limit in the near future.

6.
Science ; 381(6653): 46-50, 2023 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-37410848

RESUMEN

The imbalance of matter and antimatter in our Universe provides compelling motivation to search for undiscovered particles that violate charge-parity symmetry. Interactions with vacuum fluctuations of the fields associated with these new particles will induce an electric dipole moment of the electron (eEDM). We present the most precise measurement yet of the eEDM using electrons confined inside molecular ions, subjected to a huge intramolecular electric field, and evolving coherently for up to 3 seconds. Our result is consistent with zero and improves on the previous best upper bound by a factor of ~2.4. Our results provide constraints on broad classes of new physics above [Formula: see text] electron volts, beyond the direct reach of the current particle colliders or those likely to be available in the coming decades.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA