Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biomedicines ; 12(5)2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38791012

RESUMEN

Transient left ventricular dysfunction (TLVD), a temporary condition marked by reversible impairment of ventricular function, remains an underdiagnosed yet significant contributor to morbidity and mortality in clinical practice. Unlike the well-explored atherosclerotic disease of the epicardial coronary arteries, the diverse etiologies of TLVD require greater attention for proper diagnosis and management. The spectrum of disorders associated with TLVD includes stress-induced cardiomyopathy, central nervous system injuries, histaminergic syndromes, various inflammatory diseases, pregnancy-related conditions, and genetically determined syndromes. Furthermore, myocardial infarction with non-obstructive coronary arteries (MINOCA) origins such as coronary artery spasm, coronary thromboembolism, and spontaneous coronary artery dissection (SCAD) may also manifest as TLVD, eventually showing recovery. This review highlights the range of ischemic and non-ischemic clinical situations that lead to TLVD, gathering conditions like Tako-Tsubo Syndrome (TTS), Kounis syndrome (KS), Myocarditis, Peripartum Cardiomyopathy (PPCM), and Tachycardia-induced cardiomyopathy (TIC). Differentiation amongst these causes is crucial, as they involve distinct clinical, instrumental, and genetic predictors that bode different outcomes and recovery potential for left ventricular function. The purpose of this review is to improve everyday clinical approaches to treating these diseases by providing an extensive survey of conditions linked with TLVD and the elements impacting prognosis and outcomes.

2.
J Clin Med ; 12(10)2023 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-37240587

RESUMEN

Hypertrophic cardiomyopathy (HCM) is a genetic heart disease characterized by the thickening of the heart muscle, which can lead to symptoms such as chest pain, shortness of breath, and an increased risk of sudden cardiac death. However, not all patients with HCM have the same underlying genetic mutations, and some have conditions that resemble HCM but have different genetic or pathophysiological mechanisms, referred to as phenocopies. Cardiac magnetic resonance (CMR) imaging has emerged as a powerful tool for the non-invasive assessment of HCM and its phenocopies. CMR can accurately quantify the extent and distribution of hypertrophy, assess the presence and severity of myocardial fibrosis, and detect associated abnormalities. In the context of phenocopies, CMR can aid in the differentiation between HCM and other diseases that present with HCM-like features, such as cardiac amyloidosis (CA), Anderson-Fabry disease (AFD), and mitochondrial cardiomyopathies. CMR can provide important diagnostic and prognostic information that can guide clinical decision-making and management strategies. This review aims to describe the available evidence of the role of CMR in the assessment of hypertrophic phenotype and its diagnostic and prognostic implications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA