Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
J Biol Chem ; 298(1): 101466, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34864060

RESUMEN

Complex biological functions within organisms are frequently orchestrated by systemic communication between tissues. In the model organism Caenorhabditis elegans, the pharyngeal and body wall neuromuscular junctions are two discrete structures that control feeding and locomotion, respectively. Separate, the well-defined neuromuscular circuits control these distinct tissues. Nonetheless, the emergent behaviors, feeding and locomotion, are coordinated to guarantee the efficiency of food intake. Here, we show that pharmacological hyperactivation of cholinergic transmission at the body wall muscle reduces the rate of pumping behavior. This was evidenced by a systematic screening of the effect of the cholinesterase inhibitor aldicarb on the rate of pharyngeal pumping on food in mutant worms. The screening revealed that the key determinants of the inhibitory effect of aldicarb on pharyngeal pumping are located at the body wall neuromuscular junction. In fact, the selective stimulation of the body wall muscle receptors with the agonist levamisole inhibited pumping in a lev-1-dependent fashion. Interestingly, this response was independent of unc-38, an alpha subunit of the nicotinic receptor classically expressed with lev-1 at the body wall muscle. This implies an uncharacterized lev-1-containing receptor underpins this effect. Overall, our results reveal that body wall cholinergic transmission not only controls locomotion but simultaneously inhibits feeding behavior.


Asunto(s)
Proteínas de Caenorhabditis elegans , Inhibidores de la Colinesterasa , Conducta Alimentaria , Unión Neuromuscular , Aldicarb/farmacología , Animales , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Inhibidores de la Colinesterasa/farmacología , Conducta Alimentaria/efectos de los fármacos , Conducta Alimentaria/fisiología , Levamisol/farmacología , Unión Neuromuscular/efectos de los fármacos , Unión Neuromuscular/metabolismo , Transducción de Señal
2.
Hum Mol Genet ; 29(21): 3546-3553, 2021 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-33206170

RESUMEN

Autism spectrum disorder (ASD) is characterized by a triad of behavioural impairments including social behaviour. Neuroligin, a trans-synaptic adhesion molecule, has emerged as a penetrant genetic determinant of behavioural traits that signature the neuroatypical behaviours of autism. However, the function of neuroligin in social circuitry and the impact of genetic variation to this gene is not fully understood. Indeed, in animal studies designed to model autism, there remains controversy regarding the role of neuroligin dysfunction in the expression of disrupted social behaviours. The model organism, Caenorhabditis elegans, offers an informative experimental platform to investigate the impact of genetic variants on social behaviour. In a number of paradigms, it has been shown that inter-organismal communication by chemical cues regulates C. elegans social behaviour. We utilize this social behaviour to investigate the effect of autism-associated genetic variants within the social domain of the research domain criteria. We have identified neuroligin as an important regulator of social behaviour and segregate the importance of this gene to the recognition and/or processing of social cues. We also use CRISPR/Cas9 to edit an R-C mutation that mimics a highly penetrant human mutation associated with autism. C. elegans carrying this mutation phenocopy the behavioural dysfunction of a C. elegans neuroligin null mutant, thus confirming its significance in the regulation of animal social biology. This highlights that quantitative behaviour and precision genetic intervention can be used to manipulate discrete social circuits of the worm to provide further insight into complex social behaviour.


Asunto(s)
Trastorno Autístico/patología , Proteínas de Caenorhabditis elegans/metabolismo , Moléculas de Adhesión Celular Neuronal/metabolismo , Modelos Animales de Enfermedad , Mutación , Conducta Social , Animales , Trastorno Autístico/etiología , Trastorno Autístico/metabolismo , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Moléculas de Adhesión Celular Neuronal/genética , Fenotipo
3.
PLoS Pathog ; 16(10): e1008884, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33007049

RESUMEN

Plant parasitic nematodes are microscopic pathogens that invade plant roots and cause extensive damage to crops. We have used a chemical biology approach to define mechanisms underpinning their parasitic behaviour: We discovered that reserpine, a plant alkaloid that inhibits the vesicular monoamine transporter (VMAT), potently impairs the ability of the potato cyst nematode Globodera pallida to enter the host plant root. We show this is due to an inhibition of serotonergic signalling that is essential for activation of the stylet which is used to access the host root. Prompted by this we identified core molecular components of G. pallida serotonin signalling encompassing the target of reserpine, VMAT; the synthetic enzyme for serotonin, tryptophan hydroxylase; the G protein coupled receptor SER-7 and the serotonin-gated chloride channel MOD-1. We cloned each of these molecular components and confirmed their functional identity by complementation of the corresponding C. elegans mutant thus mapping out serotonergic signalling in G. pallida. Complementary approaches testing the effect of chemical inhibitors of each of these signalling elements on discrete sub-behaviours required for parasitism and root invasion reinforce the critical role of serotonin. Thus, targeting the serotonin signalling pathway presents a promising new route to control plant parasitic nematodes.


Asunto(s)
Protección de Cultivos/métodos , Interacciones Huésped-Patógeno , Nematodos/fisiología , Enfermedades de las Plantas/parasitología , Serotonina/metabolismo , Transducción de Señal , Solanum tuberosum/metabolismo , Animales , Solanum tuberosum/parasitología
4.
Pestic Biochem Physiol ; 186: 105152, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35973757

RESUMEN

Chemical or drug treatments are successfully used to treat parasitic nematode infections that impact human, animal and plant health. Many of these exert their effects through modifying neural function underpinning behaviours essential for parasite viability. Selectivity against the parasite may be achieved through distinct pharmacological properties of the parasite nervous system, as exemplified by the success of the ivermectin which target a glutamate-gated chloride channel found only in invertebrates. Despite the success of the ivermectins, emerging resistance and concerns around eco-toxicity are driving the search for new nematocidal chemicals or drugs. Here, we describe the potential of a 5-HT-gated chloride channel MOD-1, which is involved in vital parasite behaviours with constrained distribution in the invertebrate phyla. This ion channel has potential pharmacophores that could be targeted by new nematocidal chemicals and drugs. We have developed a microtiter based bioassay for MOD-1 pharmacology based on its ectopic expression in the Caenorhabditis elegans essential neuron M4. We have termed this technology 'PhaGeM4' for 'Pharmacogenetic targeting of M4 neuron'. Exposure of transgenic worms harbouring ectopically expressed MOD-1 to 5-HT results in developmental arrest. By additional expression of a fluorescence marker in body wall muscle to monitor growth we demonstrate that this assay is suitable for the identification of receptor agonists and antagonists. Indeed, the developmental progression is a robustly quantifiable bioassay that resolves MOD-1 activation by quipazine, 5-carboxyamidotryptamine and fluoxetine and highlight methiothepin as a potent antagonist. This assay has the intrinsic ability to highlight compounds with optimal bioavailability and furthermore to filter out off-target effects. It can be extended to the investigation of other classes of membrane receptors and modulators of neuronal excitation. This approach based on heterologous modulation of the essential M4 neuron function offers a route to discover new effective and selective anthelmintics potentially less confounded by disruptive environmental impact.


Asunto(s)
Caenorhabditis elegans , Canales de Cloruro , Neuronas , Animales , Antinematodos/farmacología , Caenorhabditis elegans/genética , Canales de Cloruro/antagonistas & inhibidores , Canales de Cloruro/genética , Ivermectina/farmacología , Neuronas/fisiología , Farmacogenética , Serotonina/metabolismo
5.
J Exp Biol ; 222(Pt 3)2019 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-30559302

RESUMEN

The integration of distinct sensory modalities is essential for behavioural decision making. In Caenorhabditiselegans, this process is coordinated by neural circuits that integrate sensory cues from the environment to generate an appropriate behaviour at the appropriate output muscles. Food is a multimodal cue that impacts the microcircuits to modulate feeding and foraging drivers at the level of the pharyngeal and body wall muscle, respectively. When food triggers an upregulation in pharyngeal pumping, it allows the effective ingestion of food. Here, we show that a Celegans mutant in the single gene orthologous to human neuroligins, nlg-1, is defective in food-induced pumping. This was not due to an inability to sense food, as nlg-1 mutants were not defective in chemotaxis towards bacteria. In addition, we found that neuroligin is widely expressed in the nervous system, including AIY, ADE, ALA, URX and HSN neurons. Interestingly, despite the deficit in pharyngeal pumping, neuroligin was not expressed within the pharyngeal neuromuscular network, which suggests an extrapharyngeal regulation of this circuit. We resolved electrophysiologically the neuroligin contribution to the pharyngeal circuit by mimicking food-dependent pumping and found that the nlg-1 phenotype is similar to mutants impaired in GABAergic and/or glutamatergic signalling. We suggest that neuroligin organizes extrapharyngeal circuits that regulate the pharynx. These observations based on the molecular and cellular determinants of feeding are consistent with the emerging role of neuroligin in discretely impacting functional circuits underpinning complex behaviours.


Asunto(s)
Caenorhabditis elegans/fisiología , Moléculas de Adhesión Celular Neuronal/genética , Animales , Caenorhabditis elegans/genética , Moléculas de Adhesión Celular Neuronal/metabolismo , Fenómenos Electrofisiológicos , Conducta Alimentaria/fisiología , Perfilación de la Expresión Génica , Sistema Nervioso , Faringe/fisiología
6.
J Biol Chem ; 290(24): 15052-65, 2015 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-25869139

RESUMEN

Glutamatergic neurotransmission is evolutionarily conserved across animal phyla. A major class of glutamate receptors consists of the metabotropic glutamate receptors (mGluRs). In C. elegans, three mGluR genes, mgl-1, mgl-2, and mgl-3, are organized into three subgroups, similar to their mammalian counterparts. Cellular reporters identified expression of the mgls in the nervous system of C. elegans and overlapping expression in the pharyngeal microcircuit that controls pharyngeal muscle activity and feeding behavior. The overlapping expression of mgls within this circuit allowed the investigation of receptor signaling per se and in the context of receptor interactions within a neural network that regulates feeding. We utilized the pharmacological manipulation of neuronally regulated pumping of the pharyngeal muscle in the wild-type and mutants to investigate MGL function. This defined a net mgl-1-dependent inhibition of pharyngeal pumping that is modulated by mgl-3 excitation. Optogenetic activation of the pharyngeal glutamatergic inputs combined with electrophysiological recordings from the isolated pharyngeal preparations provided further evidence for a presynaptic mgl-1-dependent regulation of pharyngeal activity. Analysis of mgl-1, mgl-2, and mgl-3 mutant feeding behavior in the intact organism after acute food removal identified a significant role for mgl-1 in the regulation of an adaptive feeding response. Our data describe the molecular and cellular organization of mgl-1, mgl-2, and mgl-3. Pharmacological analysis identified that, in these paradigms, mgl-1 and mgl-3, but not mgl-2, can modulate the pharyngeal microcircuit. Behavioral analysis identified mgl-1 as a significant determinant of the glutamate-dependent modulation of feeding, further highlighting the significance of mGluRs in complex C. elegans behavior.


Asunto(s)
Caenorhabditis elegans/fisiología , Conducta Alimentaria , Receptores de Glutamato Metabotrópico/fisiología , Animales , Secuencia de Bases , Caenorhabditis elegans/genética , Cartilla de ADN , Filogenia , Reacción en Cadena de la Polimerasa , Receptores de Glutamato Metabotrópico/clasificación , Receptores de Glutamato Metabotrópico/genética
7.
Neurogenetics ; 14(3-4): 233-42, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24100941

RESUMEN

Neuroligins are neuronal and neuromuscular transmembrane proteins that have been implicated in autism spectrum disorder and other cognitive diseases. The nlg-1 gene from Caenorhabditis elegans is orthologous to human neuroligin genes. In the nematode, the locomotory rate is mediated by dopaminergic and serotonergic pathways, which result in two different behavioral responses known as basal slowing response (BSR) and enhanced slowing response (ESR), respectively. We report that nlg-1-deficient mutants are defective in both the BSR and ESR behaviors. In addition, we demonstrate that methylphenidate (a dopamine reuptake inhibitor) and fluoxetine (a serotonin reuptake inhibitor), two drugs widely used for the treatment of behavioral disorders in humans, are able to restore the BSR and ESR wild type phenotypes, respectively, in nlg-1 defective mutant nematodes. The abnormal locomotory behavior patterns were rescued in nlg-1-deficient mutant by expressing a cDNA from the human NLGN1 gene under the C. elegans nlg-1 promoter. However, human NLGN1 (R453C) and NLGN1 (D432X) mutant alleles did not rescue any of the two mutant phenotypes. The results indicate that neuroligin is involved in modulating the action of dopamine and serotonin in the nematode and suggest that the functional mechanism underpinning both methylphenidate and fluoxetine in C. elegans might be comparable to that in humans. The neuroligin-deficient mutants may undergo inefficient synaptic transmissions which could affect different traits in the nervous system. In particular, neuroligin might be required for normal neurotransmitters release. The understanding of the mechanisms by which methylphenidate and fluoxetine are able to restore the behavior of these mutants could help to explain the etiology of some human neurological diseases.


Asunto(s)
Moléculas de Adhesión Celular Neuronal/fisiología , Dopamina/metabolismo , Locomoción/fisiología , Serotonina/metabolismo , Animales , Caenorhabditis elegans , Moléculas de Adhesión Celular Neuronal/genética , Inhibidores de Captación de Dopamina/farmacología , Fluoxetina/farmacología , Locomoción/efectos de los fármacos , Metilfenidato/farmacología , Vías Nerviosas/fisiología , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología
8.
PLoS One ; 17(1): e0253351, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35041685

RESUMEN

Multiple advances have been made to increase the efficiency of CRISPR/Cas9 editing using the model genetic organism Caenorhabditis elegans (C. elegans). Here we report on the use of co-CRISPR 'marker' genes: worms in which co-CRISPR events have occurred have overt, visible phenotypes which facilitates the selection of worms that harbour CRISPR events in the target gene. Mutation in the co-CRISPR gene is then removed by outcrossing to wild type but this can be challenging if the CRISPR and co-CRISPR gene are hard to segregate. However, segregating away the co-CRISPR modified gene can be less challenging if the worms selected appear wild type and are selected from a jackpot brood. These are broods in which a high proportion of the progeny of a single injected worm display the co-CRISPR phenotype suggesting high CRISPR efficiency. This can deliver worms that harbour the desired mutation in the target gene locus without the co-CRISPR mutation. We have successfully generated a discrete mutation in the C. elegans nlg-1 gene using this method. However, in the process of sequencing to authenticate editing in the nlg-1 gene we discovered genomic rearrangements that arise at the co-CRISPR gene unc-58 that by visual observation were phenotypically silent but nonetheless resulted in a significant reduction in motility scored by thrashing behaviour. This highlights that careful consideration of the hidden consequences of co-CRISPR mediated genetic changes should be taken before downstream analysis of gene function. Given this, we suggest sequencing of co-CRISPR genes following CRISPR procedures that utilise phenotypic selection as part of the pipeline.


Asunto(s)
Genotipo
9.
Toxicol Rep ; 8: 1240-1247, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34195015

RESUMEN

Caenorhabditis elegans provides a multi-cellular model organism for toxicology and drug discovery. These studies usually require solvents such as dimethyl sulfoxide (DMSO), ethanol or acetone as a vehicle. This raises the need to carefully consider whether the chemical vehicles used in these screens are anodyne towards C. elegans. Here, we use pharyngeal pumping as a bioassay to assess this. Pharyngeal pumping is a visually scoreable behaviour that is controlled by environmental cues activating sensory and integrative neural signalling to coordinate pharyngeal activity. As such it serves as a rich bioassay to screen for chemical modulation. We found that while pumping was insensitive to high concentrations of the widely used drug solvents ethanol and acetone, it was perturbed by concentrations of DMSO above 0.5 % v/v encompassing concentrations used as drug vehicle. This was manifested as an inhibition of pharyngeal pump rate followed by a slow recovery in the continued presence of the solvent. The inhibition was not observed in a neuroligin mutant, nlg-1, consistent with DMSO acting at the level of sensory processing that modulates pumping. We found that bus-17 mutants, which have enhanced cuticle penetration to drugs are more sensitive to DMSO. The effect of DMSO is accompanied by a progressive morphological disruption in which internal membrane-like structures of varying size accumulate. These internal structures are seen in all three genotypes investigated in this study and likely arise independent of the effects on pharyngeal pumping. Overall, these results highlight sensory signalling and strain dependent vehicle sensitivity. Although we define concentrations at which this can be mitigated, it highlights the need to consider time-dependent vehicle effects when evaluating control responses in C. elegans chemical biology.

10.
PLoS One ; 16(5): e0243121, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34043629

RESUMEN

Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterised by a triad of behavioural impairments and includes disruption in social behaviour. ASD has a clear genetic underpinning and hundreds of genes are implicated in its aetiology. However, how single penetrant genes disrupt activity of neural circuits which lead to affected behaviours is only beginning to be understood and less is known about how low penetrant genes interact to disrupt emergent behaviours. Investigations are well served by experimental approaches that allow tractable investigation of the underpinning genetic basis of circuits that control behaviours that operate in the biological domains that are neuro-atypical in autism. The model organism C. elegans provides an experimental platform to investigate the effect of genetic mutations on behavioural outputs including those that impact social biology. Here we use progeny-derived social cues that modulate C. elegans food leaving to assay genetic determinants of social behaviour. We used the SAFRI Gene database to identify C. elegans orthologues of human ASD associated genes. We identified a number of mutants that displayed selective deficits in response to progeny. The genetic determinants of this complex social behaviour highlight the important contribution of synaptopathy and implicates genes within cell signalling, epigenetics and phospholipid metabolism functional domains. The approach overlaps with a growing number of studies that investigate potential molecular determinants of autism in C. elegans. However, our use of a complex, sensory integrative, emergent behaviour provides routes to enrich new or underexplored biology with the identification of novel candidate genes with a definable role in social behaviour.


Asunto(s)
Trastorno del Espectro Autista/genética , Conducta Animal , Caenorhabditis elegans/genética , Conducta Social , Animales , Trastorno del Espectro Autista/fisiopatología , Caenorhabditis elegans/fisiología , Modelos Animales de Enfermedad , Epigenómica , Humanos , Mutación/genética
11.
Invert Neurosci ; 18(2): 4, 2018 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-29532181

RESUMEN

Synapses are specialized contact sites that mediate information flow between neurons and their targets. Important physical interactions across the synapse are mediated by synaptic adhesion molecules. These adhesions regulate formation of synapses during development and play a role during mature synaptic function. Importantly, genes regulating synaptogenesis and axon regeneration are conserved across the animal phyla. Genetic screens in the nematode Caenorhabditis elegans have identified a number of molecules required for synapse patterning and assembly. C. elegans is able to survive even with its neuronal function severely compromised. This is in comparison with Drosophila and mice where increased complexity makes them less tolerant to impaired function. Although this fact may reflect differences in the function of the homologous proteins in the synapses between these organisms, the most likely interpretation is that many of these components are equally important, but not absolutely essential, for synaptic transmission to support the relatively undemanding life style of laboratory maintained C. elegans. Here, we review research on the major group of synaptic proteins, involved in the presynaptic machinery in C. elegans, showing a strong conservation between higher organisms and highlight how C. elegans can be used as an informative tool for dissecting synaptic components, based on a simple nervous system organization.


Asunto(s)
Caenorhabditis elegans/citología , Neuronas/fisiología , Terminales Presinápticos/fisiología , Sinapsis/metabolismo , Animales , Proteínas de Caenorhabditis elegans/metabolismo , Transmisión Sináptica
12.
Invert Neurosci ; 19(1): 1, 2018 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-30488358

RESUMEN

Na+/K+-pump is an electrogenic transmembrane ATPase located in the outer plasma membrane of cells. The Na+/K+-ATPase pumps 3 sodium ions out of cells while pumping 2 potassium ions into cells. Both cations move against their concentration gradients. This enzyme's electrogenic nature means that it has a chronic role in stabilizing the resting membrane potential of the cell, in regulating the cell volume and in the signal transduction of the cell. This review will mainly consider the role of the Na+/K+-pump in neurons, with an emphasis on its role in modulating neurotransmitter receptor. Most of the literature on the modulation of neurotransmitter receptors refers to the situation in the mammalian nervous system, but the position is likely to be similar in most, if not all, invertebrate nervous systems.


Asunto(s)
Neuronas/metabolismo , Receptores de Neurotransmisores/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Animales , Humanos , Potenciales de la Membrana/fisiología
13.
J Med Food ; 20(3): 223-234, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28103133

RESUMEN

The purpose of the present study was to examine the nutraceutical potential of choline as an added value to its well-known brain nutrient role. Several toxicity, antitoxicity, genotoxicity, antigenotoxicity, and longevity endpoints were checked in the somatic mutation and recombination test in in vivo Drosophila animal model. Cytotoxicity in human leukemia-60 cell line (HL-60) promyelocytic and NIH3T3 mouse fibroblast cells, proapoptotic DNA fragmentation, comet assay, methylation status, and macroautophagy (MA) activity were tested in in vitro assays. Choline is not only safe but it is also able to protect against the DNA damage caused by an oxidative genotoxin. Moreover, it improves the life extension in the animal model. The in vitro results show that it is able to exhibit genetic damage against leukemia HL-60 cells. Single-strand breaks in DNA are observed at the molecular level in treatments with choline, although only a significant hypermethylation on the long interspersed elements-1 and a hypomethylation on the satellite-alpha DNA repetitive DNA sequences of HL-60 cells at the lowest concentration (0.447 mM) were observed. Besides, choline decreased MA at the lower assayed concentration and the MA response to topoisomerase inhibitor (etoposide) is maintained in the presence of treatment with 0.22 mM choline. Taking into account the hopeful results obtained in the in vivo and in vitro assays, choline could be proposed as a substance with an important nutraceutical value for different purposes.


Asunto(s)
Colina/farmacología , Daño del ADN/efectos de los fármacos , Animales , ADN/genética , Roturas del ADN/efectos de los fármacos , Células HL-60 , Humanos , Ratones , Células 3T3 NIH
14.
Sci Rep ; 7(1): 10122, 2017 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-28860630

RESUMEN

Oxytocin has a conserved role in regulating animal social behaviour including parental-offspring interactions. Recently an oxytocin-like neuropeptide, nematocin, and its cognate receptors have been identified in the nematode Caenorhabditis elegans. We provide evidence for a pheromone signal produced by C. elegans larvae that modifies the behaviour of adult animals in an oxytocin-dependent manner increasing their probability of leaving a food patch which the larvae are populating. This increase is positively correlated to the size of the larval population but cannot be explained by food depletion nor is it modulated by biogenic amines, which suggest it is not an aversive behaviour. Moreover, the food-leaving behaviour is conspecific and pheromone dependent: C. elegans adults respond more strongly to C. elegans larvae compared to other nematode species and this effect is absent in C. elegans daf-22 larvae which are pheromone deficient. Neurotransmitter receptors previously implicated in C. elegans foraging decisions NPR-1 and TYRA-3, for NPY-like neuropeptides and tyramine respectively, do not appear to be involved in oxytocin-dependent adult food-leaving. We conclude oxytocin signals within a novel neural circuit that regulates parental-offspring social behaviour in C. elegans and that this provides evidence for evolutionary conservation of molecular components of a parental decision making behaviour.


Asunto(s)
Conducta Alimentaria , Oxitocina/metabolismo , Conducta Social , Animales , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiología , Proteínas de Caenorhabditis elegans/metabolismo , Larva/fisiología , Receptores de Catecolaminas/metabolismo , Receptores de Neuropéptido Y/metabolismo
15.
Aging Cell ; 15(5): 832-41, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27220516

RESUMEN

Model organisms subject to dietary restriction (DR) generally live longer. Accompanying this lifespan extension are improvements in overall health, based on multiple metrics. This indicates that pharmacological treatments that mimic the effects of DR could improve health in humans. To find new chemical structures that extend lifespan, we screened 30 000 synthetic, diverse drug-like chemicals in Caenorhabditis elegans and identified several structurally related compounds that acted through DR mechanisms. The most potent of these NP1 impinges upon a food perception pathway by promoting glutamate signaling in the pharynx. This results in the overriding of a GPCR pathway involved in the perception of food and which normally acts to decrease glutamate signals. Our results describe the activation of a dietary restriction response through the pharmacological masking of a novel sensory pathway that signals the presence of food. This suggests that primary sensory pathways may represent novel targets for human pharmacology.


Asunto(s)
Caenorhabditis elegans/fisiología , Privación de Alimentos/fisiología , Longevidad/fisiología , Transducción de Señal , Animales , Proteínas de Caenorhabditis elegans/metabolismo , Restricción Calórica , Canales de Cloruro/metabolismo , Conducta Alimentaria/efectos de los fármacos , Glutamatos/metabolismo , Longevidad/efectos de los fármacos , Modelos Biológicos , Contracción Muscular/efectos de los fármacos , Mutación/genética , Faringe/efectos de los fármacos , Faringe/fisiología , Receptores Muscarínicos/genética , Receptores Muscarínicos/metabolismo , Transducción de Señal/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/análisis , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología
16.
Gene Expr Patterns ; 17(2): 69-78, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25726726

RESUMEN

Neuroligins are synaptic adhesion molecules and important determinants of synaptic function. They are expressed at postsynaptic sites and involved in synaptic organization through key extracellular and intracellular protein interactions. They undergo trans-synaptic interaction with presynaptic neurexins. Distinct neuroligins use differences in their intracellular domains to selectively recruit synaptic scaffolds and this plays an important role in how they encode specialization of synaptic function. Several levels of regulation including gene expression, splicing, protein translation and processing regulate the expression of neuroligin function. We have used in silico and cDNA analyses to investigate the mRNA splicing of the Caenorhabditis elegans orthologue nlg-1. Transcript analysis highlights the potential for gene regulation with respect to both temporal expression and splicing. We found nlg-1 splice variants with all the predicted exons are a minor species relative to major splice variants lacking exons 13 and 14, or 14 alone. These major alternatively spliced variants change the intracellular domain of the gene product NLG-1. Interestingly, exon 14 encodes a cassette with two distinct potential functional domains. One is a polyproline SH3 binding domain and the other has homology to a region encoding the binding site for the scaffolding protein gephyrin in mammalian neuroligins. This suggests differential splicing impacts on NLG-1 competence to recruit intracellular binding partners. This may have developmental relevance as nlg-1 exon 14 containing transcripts are selectively expressed in L2-L3 larvae. These results highlight a developmental regulation of C. elegans nlg-1 that could play a key role in the assembly of synaptic protein complexes during the early stages of nervous system development.


Asunto(s)
Empalme Alternativo , Caenorhabditis elegans/genética , Moléculas de Adhesión Celular Neuronal/genética , Regulación del Desarrollo de la Expresión Génica , Animales , Caenorhabditis elegans/crecimiento & desarrollo , Caenorhabditis elegans/metabolismo , Proteínas Portadoras/metabolismo , Moléculas de Adhesión Celular Neuronal/metabolismo , Simulación por Computador , Exones , Genes de Helminto , Humanos , Larva/metabolismo , Proteínas de la Membrana/metabolismo , Sistema Nervioso/crecimiento & desarrollo , Péptidos/metabolismo , Filogenia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estructura Terciaria de Proteína
17.
Invert Neurosci ; 14(2): 79-90, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25148907

RESUMEN

Neuroligins are cell-adhesion proteins that interact with neurexins at the synapse. This interaction may contribute to differentiation, plasticity and specificity of synapses. In humans, single mutations in neuroligin-encoding genes are implicated in autism spectrum disorder and/or mental retardation. Moreover, some copy number variations and point mutations in neurexin-encoding genes have been linked to neurodevelopmental disorders including autism. Neurexins are subject to extensive alternative splicing, highly regulated in mammals, with a great physiological importance. In addition, neuroligins and neurexins are subjected to proteolytic processes that regulate synaptic transmission modifying pre- and postsynaptic activities and may also regulate the remodelling of spines at specific synapses. Four neuroligin genes exist in mice and five in human, whilst in the nematode Caenorhabditis elegans, there is only one orthologous gene. In a similar manner, in mammals, there are three neurexin genes, each of them encoding two major isoforms named α and ß, respectively. In contrast, there is one neurexin gene in C. elegans that also generates two isoforms like mammals. The complexity of the genetic organization of neurexins is due to extensive processing resulting in hundreds of isoforms. In this review, a wide comparison is made between the genes in the nematode and human with a view to better understanding the conservation of processing in these synaptic proteins in C. elegans, which may serve as a genetic model to decipher the synaptopathies underpinning neurodevelopmental disorders such as autism.


Asunto(s)
Moléculas de Adhesión Celular Neuronal/metabolismo , Evolución Molecular , Proteínas del Tejido Nervioso/metabolismo , Empalme Alternativo/genética , Animales , Caenorhabditis elegans , Moléculas de Adhesión Celular Neuronal/genética , Humanos , Proteínas del Tejido Nervioso/genética
18.
PLoS One ; 7(6): e39277, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22723984

RESUMEN

Neuroligins are cell adhesion proteins that interact with neurexins at the synapse. This interaction may contribute to differentiation, plasticity and specificity of synapses. In humans, single mutations in neuroligin encoding genes lead to autism spectrum disorder and/or mental retardation. Caenorhabditis elegans mutants deficient in nlg-1, an orthologue of human neuroligin genes, have defects in different behaviors. Here we show that the expression of human NLGN1 or rat Nlgn1 cDNAs in C. elegans nlg-1 mutants rescues the fructose osmotic strength avoidance and gentle touch response phenotypes. Two specific point mutations in NLGN3 and NLGN4 genes, involved in autistic spectrum disorder, were further characterized in this experimental system. The R451C allele described in NLGN3, was analyzed with both human NLGN1 (R453C) and worm NLG-1 (R437C) proteins, and both were not functional in rescuing the osmotic avoidance behavior and the gentle touch response phenotype. The D396X allele described in NLGN4, which produces a truncated protein, was studied with human NLGN1 (D432X) and they did not rescue any of the behavioral phenotypes analyzed. In addition, RNAi feeding experiments measuring gentle touch response in wild type strain and worms expressing SID-1 in neurons (which increases the response to dsRNA), both fed with bacteria expressing dsRNA for nlg-1, provided evidence for a postsynaptic in vivo function of neuroligins both in muscle cells and neurons, equivalent to that proposed in mammals. This finding was further confirmed generating transgenic nlg-1 deficient mutants expressing NLG-1 under pan-neuronal (nrx-1) or pan-muscular (myo-3) specific promoters. All these results suggest that the nematode could be used as an in vivo model for studying particular synaptic mechanisms with proteins orthologues of humans involved in pervasive developmental disorders.


Asunto(s)
Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Moléculas de Adhesión Celular Neuronal/genética , Moléculas de Adhesión Celular Neuronal/metabolismo , Mutación , Fenotipo , Animales , Animales Modificados Genéticamente , Moléculas de Adhesión Celular Neuronal/deficiencia , ADN Complementario , Fructosa/metabolismo , Expresión Génica , Humanos , Células Musculares/metabolismo , Neuronas/metabolismo , Ósmosis , Interferencia de ARN , Ratas , Tacto
19.
Invert Neurosci ; 11(2): 73-83, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22068627

RESUMEN

The nematode Caenorhabditis elegans has a very well-defined and genetically tractable nervous system which offers an effective model to explore basic mechanistic pathways that might be underpin complex human neurological diseases. Here, the role C. elegans is playing in understanding two neurodegenerative conditions, Parkinson's and Alzheimer's disease (AD), and a complex neurological condition, autism, is used as an exemplar of the utility of this model system. C. elegans is an imperfect model of Parkinson's disease because it lacks orthologues of the human disease-related genes PARK1 and LRRK2 which are linked to the autosomal dominant form of this disease. Despite this fact, the nematode is a good model because it allows transgenic expression of these human genes and the study of the impact on dopaminergic neurons in several genetic backgrounds and environmental conditions. For AD, C. elegans has orthologues of the amyloid precursor protein and both human presenilins, PS1 and PS2. In addition, many of the neurotoxic properties linked with Aß amyloid and tau peptides can be studied in the nematode. Autism spectrum disorder is a complex neurodevelopmental disorder characterised by impairments in human social interaction, difficulties in communication, and restrictive and repetitive behaviours. Establishing C. elegans as a model for this complex behavioural disorder is difficult; however, abnormalities in neuronal synaptic communication are implicated in the aetiology of the disorder. Numerous studies have associated autism with mutations in several genes involved in excitatory and inhibitory synapses in the mammalian brain, including neuroligin, neurexin and shank, for which there are C. elegans orthologues. Thus, several molecular pathways and behavioural phenotypes in C. elegans have been related to autism. In general, the nematode offers a series of advantages that combined with knowledge from other animal models and human research, provides a powerful complementary experimental approach for understanding the molecular mechanisms and underlying aetiology of complex neurological diseases.


Asunto(s)
Enfermedad de Alzheimer/genética , Caenorhabditis elegans , Trastornos Generalizados del Desarrollo Infantil/genética , Modelos Animales de Enfermedad , Enfermedad de Parkinson/genética , Enfermedad de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Niño , Trastornos Generalizados del Desarrollo Infantil/metabolismo , Neuronas Dopaminérgicas/metabolismo , Humanos , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina , Degeneración Nerviosa/genética , Degeneración Nerviosa/metabolismo , Enfermedad de Parkinson/metabolismo , Presenilinas/genética , Presenilinas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Sinapsis/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
20.
J Vis Exp ; (34)2009 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-20010541

RESUMEN

Neurexins and neuroligins are cell adhesion molecules present in excitatory and inhibitory synapses, and they are required for correct neuron network function. These proteins are found at the presynaptic and postsynaptic membranes. Studies in mice indicate that neurexins and neurologins have an essential role in synaptic transmission. Recent reports have shown that altered neuronal connections during the development of the human nervous system could constitute the basis of the etiology of numerous cases of autism spectrum disorders. Caenorhabditis elegans could be used as an experimental tool to facilitate the study of the functioning of synaptic components, because of its simplicity for laboratory experimentation, and given that its nervous system and synaptic wiring has been fully characterized. In C. elegans nrx-1 and nlg-1 genes are orthologous to human NRXN1 and NLGN1 genes which encode alpha-neurexin-1 and neuroligin-1 proteins, respectively. In humans and nematodes, the organization of neurexins and neuroligins is similar in respect to functional domains. The head of the nematode contains the amphid, a sensory organ of the nematode, which mediates responses to different stimuli, including osmotic strength. The amphid is made of 12 sensory bipolar neurons with ciliated dendrites and one presynaptic terminal axon. Two of these neurons, named ASHR and ASHL are particularly important in osmotic sensory function, detecting water-soluble repellents with high osmotic strength. The dendrites of these two neurons lengthen to the tip of the mouth and the axons extend to the nerve ring, where they make synaptic connections with other neurons determining the behavioral response. To evaluate the implications of neurexin and neuroligin in high osmotic strength avoidance, we show the different response of C. elegans mutants defective in nrx-1 and nlg-1 genes, using a method based on a 4M fructose ring. The behavioral phenotypes were confirmed using specific RNAi clones. In C. elegans, the dsRNA required to trigger RNAi can be administered by feeding. The delivery of dsRNA through food induces the RNAi interference of the gene of interest thus allowing the identification of genetic components and network pathways.


Asunto(s)
Trastorno Autístico/genética , Caenorhabditis elegans/fisiología , Moléculas de Adhesión de Célula Nerviosa/genética , Sinapsis/fisiología , Animales , Caenorhabditis elegans/genética , Humanos , Presión Osmótica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA