Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Int J Mol Sci ; 24(5)2023 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-36902018

RESUMEN

Sulfur-containing amino acids methionine (Met), cysteine (Cys) and taurine (Tau) are common dietary constituents with important cellular roles. Met restriction is already known to exert in vivo anticancer activity. However, since Met is a precursor of Cys and Cys produces Tau, the role of Cys and Tau in the anticancer activity of Met-restricted diets is poorly understood. In this work, we screened the in vivo anticancer activity of several Met-deficient artificial diets supplemented with Cys, Tau or both. Diet B1 (6% casein, 2.5% leucine, 0.2% Cys and 1% lipids) and diet B2B (6% casein, 5% glutamine, 2.5% leucine, 0.2% Tau and 1% lipids) showed the highest activity and were selected for further studies. Both diets induced marked anticancer activity in two animal models of metastatic colon cancer, which were established by injecting CT26.WT murine colon cancer cells in the tail vein or peritoneum of immunocompetent BALB/cAnNRj mice. Diets B1 and B2B also increased survival of mice with disseminated ovarian cancer (intraperitoneal ID8 Tp53-/- cells in C57BL/6JRj mice) and renal cell carcinoma (intraperitoneal Renca cells in BALB/cAnNRj mice). The high activity of diet B1 in mice with metastatic colon cancer may be useful in colon cancer therapy.


Asunto(s)
Aminoácidos Sulfúricos , Carcinoma de Células Renales , Neoplasias del Colon , Neoplasias Renales , Neoplasias Ováricas , Ratones , Animales , Femenino , Humanos , Aminoácidos Sulfúricos/metabolismo , Caseínas , Leucina , Ratones Endogámicos C57BL , Metionina/metabolismo , Cisteína/metabolismo , Dieta , Taurina/metabolismo , Racemetionina , Lípidos
2.
Int J Mol Sci ; 24(23)2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38069364

RESUMEN

Breast cancer is the most common type of cancer in women. Although current treatments can increase patient survival, they are rarely curative when the disease is advanced (metastasis). Therefore, there is an urgent need to develop new cytotoxic drugs with a high selectivity toward cancer cells. Since repurposing approved drugs for cancer therapy has been a successful strategy in recent years, in this study, we screened a library of antiviral piperazine-derived compounds as anticancer agents. The compounds included a piperazine ring and aryl urea functions, which are privileged structures present in several anti-breast cancer drugs. The selective cytotoxic activity of a set of thirty-four 4-acyl-2-substituted piperazine urea derivatives against MCF7 breast cancer cells and MCF 10A normal breast cells was determined. Compounds 31, 32, 35, and 37 showed high selective anticancer activity against breast cancer cells and were also tested against another common type of cancer, non-small cell lung cancer (A549 lung cancer cells versus MRC-5 lung normal cells). Compounds 35 and 37 also showed selectivity against lung cancer cells. These results suggest that compounds 35 and 37 may be promising hit compounds for the development of new anticancer agents.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Femenino , Humanos , Neoplasias de la Mama/tratamiento farmacológico , Reposicionamiento de Medicamentos , Antineoplásicos/farmacología , Antineoplásicos/química , Piperazina/farmacología , Piperazina/química , Urea/farmacología , Relación Estructura-Actividad , Ensayos de Selección de Medicamentos Antitumorales , Proliferación Celular , Estructura Molecular , Células MCF-7
3.
Int J Mol Sci ; 23(24)2022 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-36555771

RESUMEN

Targeted therapies with antiangiogenic drugs (e.g., sunitinib) and immune checkpoint inhibitors (e.g., anti-PD-1 antibodies) are the standard of care for patients with metastatic renal cell carcinoma. Although these treatments improve patient survival, they are rarely curative. We previously hypothesized that advanced cancers might be treated without drugs by using artificial diets in which the levels of specific amino acids (AAs) are manipulated. In this work, after showing that AA manipulation induces selective anticancer activity in renal cell carcinoma cells in vitro, we screened 18 artificial diets for anticancer activity in a challenging animal model of renal cell carcinoma. The model was established by injecting murine renal cell carcinoma (Renca) cells into the peritoneum of immunocompetent BALB/cAnNRj mice. Mice survival was markedly improved when their normal diet was replaced with our artificial diets. Mice fed a diet lacking six AAs (diet T2) lived longer than mice treated with sunitinib or anti-PD-1 immunotherapy; several animals lived very long or were cured. Controlling the levels of several AAs (e.g., cysteine, methionine, and leucine) and lipids was important for the anticancer activity of the diets. Additional studies are needed to further evaluate the therapeutic potential and mechanism of action of this simple and inexpensive anticancer strategy.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Animales , Ratones , Carcinoma de Células Renales/tratamiento farmacológico , Carcinoma de Células Renales/patología , Sunitinib/farmacología , Sunitinib/uso terapéutico , Aminoácidos , Neoplasias Renales/patología , Dieta
4.
Clin Oral Investig ; 22(8): 2943-2946, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30151707

RESUMEN

OBJECTIVES: To provide mechanistic evidence for the epidemiological link between long-term use of alcohol-containing mouthwashes and oral cancer. MATERIAL AND METHODS: Human epithelial keratinocytes were exposed for 30 s to concentrations of ethanol commonly present in mouthwashes. After a recovery period, cell viability was assessed with the MTT assay. RESULTS: A marked cytotoxic effect was observed for ethanol concentrations of 20% and above. CONCLUSIONS: The cytotoxicity of ethanol may explain the epidemiological association between mouthwash use and oral cancer. Evidence suggests that the risk of developing cancer in a tissue is strongly determined by the number of stem cell divisions accumulated by the tissue during a person's lifetime; cell division is a major source of mutations and other cancer-promoting errors. Since cell death activates the division of stem cells, the possible cytotoxicity of ethanol on the cells lining the oral mucosa will promote the division of the stem cells located in deeper layers to produce new cells to regenerate the damaged epithelium. If we regularly use mouthwashes containing cytotoxic concentrations of ethanol, the stem cells of the oral cavity may need to divide more often than usual and our risk of developing oral cancer may increase. CLINICAL RELEVANCE: Many mouthwashes contain percentages of ethanol above 20%. Because ethanol is not crucial to prevent and reduce gingivitis and plaque, members of the dental team should consider the potential risk of oral cancer associated with frequent use of alcohol-containing mouthwashes when advising their patients.


Asunto(s)
Etanol/toxicidad , Queratinocitos/efectos de los fármacos , Neoplasias de la Boca/inducido químicamente , Antisépticos Bucales/química , Antisépticos Bucales/toxicidad , Línea Celular , Humanos , Técnicas In Vitro
5.
Drug Dev Res ; 79(8): 426-436, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30375672

RESUMEN

Preclinical Research & Development Several clinically useful anticancer drugs selectively kill cancer cells by inducing DNA damage; the genomic instability and DNA repair defects of cancer cells make them more vulnerable than normal cells to the cytotoxicity of DNA-damaging agents. Because epoxide-containing compounds can induce DNA damage, we have used the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay to evaluate the selective cytotoxicity of three epoxyalkyl galactopyranosides against A549 lung cancer cells and MRC-5 lung normal cells. Compound (2S,3S)-2,3-epoxydecyl 4,6-O-(S)-benzylidene-ß-d-galactopyranoside (EDBGP) showed the highest selective anticancer activity and was selected for mechanistic studies. After observing that EDBGP induced cellular DNA damage (comet assay), we found that cells deficient in nucleotide excision repair were hypersensitive to the cytotoxicity of this compound; this suggests that EDBGP may induce bulky DNA adducts. EDBGP did not inhibit glycolysis (glucose consumption and lactate production). Pretreatment of lung cancer cells with several antioxidants did not reduce the cytotoxicity of EDBGP, thereby indicating that reactive oxygen species do not participate in the anticancer activity of this compound. Finally, EDBGP was screened against a panel of cancer cells and normal cells from several tissues, including three genetically modified skin fibroblasts with increasing degree of malignancy. Our results suggest that epoxyalkyl galactopyranosides are promising lead compounds for the development of new anticancer agents.


Asunto(s)
Citotoxinas/química , Daño del ADN/efectos de los fármacos , Galactosa/química , Galactosa/toxicidad , Células A549 , Animales , Células CHO , Línea Celular Transformada , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Cricetulus , Daño del ADN/fisiología , Relación Dosis-Respuesta a Droga , Femenino , Células HCT116 , Células HL-60 , Células HeLa , Células Hep G2 , Humanos , Células MCF-7 , Masculino
6.
Nucleic Acids Res ; 42(14): 9108-20, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25074383

RESUMEN

Decitabine (5-aza-2'-deoxycytidine, 5-azadC) is used in the treatment of Myelodysplatic syndrome (MDS) and Acute Myeloid Leukemia (AML). Its mechanism of action is thought to involve reactivation of genes implicated in differentiation and transformation, as well as induction of DNA damage by trapping DNA methyltranferases (DNMT) to DNA. We demonstrate for the first time that base excision repair (BER) recognizes 5-azadC-induced lesions in DNA and mediates repair. We find that BER (XRCC1) deficient cells are sensitive to 5-azadC and display an increased amount of DNA single- and double-strand breaks. The XRCC1 protein co-localizes with DNMT1 foci after 5-azadC treatment, suggesting a novel and specific role of XRCC1 in the repair of trapped DNMT1. 5-azadC-induced DNMT foci persist in XRCC1 defective cells, demonstrating a role for XRCC1 in repair of 5-azadC-induced DNA lesions. Poly (ADP-ribose) polymerase (PARP) inhibition prevents XRCC1 relocation to DNA damage sites, disrupts XRCC1-DNMT1 co-localization and thereby efficient BER. In a panel of AML cell lines, combining 5-azadC and Olaparib cause synthetic lethality. These data suggest that PARP inhibitors can be used in combination with 5-azadC to improve treatment of MDS and AML.


Asunto(s)
Antimetabolitos Antineoplásicos/toxicidad , Azacitidina/análogos & derivados , Reparación del ADN/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Ftalazinas/farmacología , Piperazinas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Animales , Azacitidina/toxicidad , Línea Celular Tumoral , Cricetinae , ADN (Citosina-5-)-Metiltransferasas/análisis , Aductos de ADN/metabolismo , Roturas del ADN de Doble Cadena , Proteínas de Unión al ADN/análisis , Decitabina , Humanos , Reparación del ADN por Recombinación , Proteína 1 de Reparación por Escisión del Grupo de Complementación Cruzada de las Lesiones por Rayos X
8.
Nucleic Acids Res ; 41(11): 5827-36, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23609537

RESUMEN

5-Aza-2'-deoxycytidine (5-azadC) is a DNA methyltransferase (DNMT) inhibitor increasingly used in treatments of hematological diseases and works by being incorporated into DNA and trapping DNMT. It is unclear what DNA lesions are caused by 5-azadC and if such are substrates for DNA repair. Here, we identify that 5-azadC induces DNA damage as measured by γ-H2AX and 53BP1 foci. Furthermore, 5-azadC induces radial chromosomes and chromatid breaks that depend on active replication, which altogether suggest that trapped DNMT collapses oncoming replication forks into double-strand breaks. We demonstrate that RAD51-mediated homologous recombination (HR) is activated to repair 5-azadC collapsed replication forks. Fanconi anemia (FA) is a rare autosomal recessive disorder, and deaths are often associated with leukemia. Here, we show that FANCG-deficient cells fail to trigger HR-mediated repair of 5-azadC-induced lesions, leading to accumulation of chromatid breaks and inter-chromosomal radial fusions as well as hypersensitivity to the cytotoxic effects of 5-azadC. These data demonstrate that the FA pathway is important to protect from 5-azadC-induced toxicity. Altogether, our data demonstrate that cytotoxicity of the epigenetic drug 5-azadC can, at least in part, be explained by collapsed replication forks requiring FA-mediated HR for repair.


Asunto(s)
Azacitidina/análogos & derivados , Replicación del ADN/efectos de los fármacos , Inhibidores Enzimáticos/toxicidad , Proteína del Grupo de Complementación G de la Anemia de Fanconi/fisiología , Reparación del ADN por Recombinación , Animales , Azacitidina/toxicidad , Línea Celular , Cromátides/efectos de los fármacos , Cricetinae , Cricetulus , Roturas del ADN , Proteína Quinasa Activada por ADN/antagonistas & inhibidores , Decitabina , Leupeptinas/farmacología , Inhibidores de Proteasoma/farmacología
9.
Nutrients ; 16(14)2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-39064692

RESUMEN

Selenium, zinc, copper, and manganese are essential components of antioxidant enzymes involved in the elimination of reactive oxygen species (ROS). Given that cancer cells produce high levels of ROS and the accumulation of ROS can lead to cell death, cancer cells may be susceptible to strategies that reduce ROS elimination. In this work, we prepared several artificial diets that contained normal carbohydrate, protein, and lipid levels but lacked selenium, zinc, copper, or manganese. The anticancer activity of these diets was examined in a metastatic ovarian cancer model, established by injecting ID8 Trp53-/- murine ovarian cancer cells into the peritoneal cavity of C57BL/6JRj mice. Treatments started 15 days later and consisted of replacing a normal diet with one of the artificial diets for several weeks. A significant improvement in mice survival was observed when the normal diet was replaced with the selenium-free diet. Diets lacking zinc, copper, or manganese showed no significant impact on mice survival. All diets were very well tolerated. The anticancer efficacy of a diet lacking selenium was confirmed in mice with metastatic colon cancer and in mice with metastatic triple-negative breast cancer. These results suggest that diets lacking selenium hold potential for the treatment of metastatic cancers.


Asunto(s)
Cobre , Dieta , Manganeso , Ratones Endogámicos C57BL , Neoplasias Ováricas , Selenio , Zinc , Animales , Femenino , Selenio/farmacología , Selenio/administración & dosificación , Manganeso/administración & dosificación , Zinc/farmacología , Ratones , Neoplasias Ováricas/patología , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/dietoterapia , Neoplasias del Colon/patología , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/dietoterapia , Línea Celular Tumoral , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/patología , Metástasis de la Neoplasia , Especies Reactivas de Oxígeno/metabolismo , Humanos
10.
Planta Med ; 79(12): 1017-23, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23824549

RESUMEN

Recent evidence suggests that cardiac glycosides might be used for the treatment of cancer. The ornamental shrub Nerium oleander has been used in traditional medicine for treating several disorders including cancer, and extracts from the leaves of this plant have already entered phase I clinical trials. In this communication, we have prepared a hydroalcoholic extract from the leaves of Nerium oleander (containing 4.75 ± 0.32 % of cardenolides) and have assessed its cytotoxic activity in A549 lung cancer cells vs. MRC5 nonmalignant lung fibroblasts. The results showed that the cytotoxicity of the Nerium oleander extract against the cancer cell line was significantly higher than that against the nonmalignant cell line, with a potency and selectivity similar to those of the anticancer drug cisplatin. Pretreatment of A549 cells with the antioxidants N-acetylcysteine and catalase slightly prevented the cytotoxicity of the extract, therefore suggesting that the formation of reactive oxygen species participates in its cytotoxic activity but does not play a major role. Nerium oleander extract-induced cytotoxicity and DNA damage (gamma-H2AX focus formation) were slightly higher in cells lacking BRCA2 (deficient in homologous recombination repair) than in parental cells; this indicates that the induction of DNA damage may also play a role in the cytotoxicity of the extract. Nerium oleander extract induced a marked inhibition of glycolysis (glucose consumption and lactate production) in A549 cells, comparable to that of the glycolysis inhibitor dichloroacetate (currently in clinical development for cancer therapy). Because platinum compounds are widely used in the treatment of lung cancer, we tested the cytotoxicity of several combinations of cisplatin with the extract and found a moderate synergism when Nerium oleander extract was administered after cisplatin but a moderate antagonism when it was added before cisplatin. Our results suggest that extracts from Nerium oleander might induce anticancer effects in patients with lung cancer and support their possible advancement into phase II clinical trials for the treatment of this type of cancer.


Asunto(s)
Antineoplásicos/farmacología , Cardenólidos/farmacología , Glucólisis/efectos de los fármacos , Neoplasias Pulmonares/tratamiento farmacológico , Nerium/química , Extractos Vegetales/farmacología , Acetilcisteína/farmacología , Antineoplásicos/aislamiento & purificación , Antioxidantes/farmacología , Proteína BRCA2/genética , Cardenólidos/aislamiento & purificación , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Cisplatino/farmacología , Daño del ADN/efectos de los fármacos , Humanos , Extractos Vegetales/aislamiento & purificación , Hojas de la Planta/química , Plantas Medicinales , Especies Reactivas de Oxígeno/metabolismo
11.
Plants (Basel) ; 12(18)2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37765439

RESUMEN

Every year, cancer kills millions of people around the world. Finding more selective anticancer agents is essential to improve the low survival rates of patients with metastatic cancers. Since the research of natural products is a valuable approach to the discovery of new compounds and the Iberian flora offers a rich source of unstudied plants, we have carried out a random screening of 76 plant species from 43 families collected in Andalusia (South of Spain). Using non-malignant cells (HaCaT) and lung cancer cells (A549), we found that the extract from Arum italicum Mill. subsp. italicum (Araceae), Mandragora autumnalis Bertol. (Solanaceae), Rhamnus alaternus L. (Rhamnaceae), and Lomelosia simplex (Desf.) Raf. subsp. dentata (Jord. & Fourr.) Greuter & Burdet (Dipsacaceae) showed selective cytotoxicity against lung cancer cells. Extracts of plant species belonging to the Iridaceae family showed high selective activity against cancer cells, highlighting that the Xiphion xiphium (L.) M.B. Crespo, Mart.-Azorín & Mavrodiev flower extract was more selective against lung cancer cells than the standard anticancer drugs, cisplatin and 5-fluorouracil. This extract also showed modest selective cytotoxicity against bladder carcinoma cells (T24). The number of cells in the G1 phase increased after treatment with the extract from Xiphion xiphium. Our research indicates that various plants are potential sources for the isolation and development of new anticancer drugs.

12.
Cancers (Basel) ; 15(5)2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36900331

RESUMEN

Patients with metastatic triple negative breast cancer (TNBC) need new therapies to improve the low survival rates achieved with standard treatments. In this work, we show for the first time that the survival of mice with metastatic TNBC can be markedly increased by replacing their normal diet with artificial diets in which the levels of amino acids (AAs) and lipids are strongly manipulated. After observing selective anticancer activity in vitro, we prepared five artificial diets and evaluated their anticancer activity in a challenging model of metastatic TNBC. The model was established by injecting 4T1 murine TNBC cells into the tail vein of immunocompetent BALB/cAnNRj mice. First-line drugs doxorubicin and capecitabine were also tested in this model. AA manipulation led to modest improvements in mice survival when the levels of lipids were normal. Reducing lipid levels to 1% markedly improved the activity of several diets with different AA content. Some mice fed the artificial diets as monotherapy lived much longer than mice treated with doxorubicin and capecitabine. An artificial diet without 10 non-essential AAs, with reduced levels of essential AAs, and with 1% lipids improved the survival not only of mice with TNBC but also of mice with other types of metastatic cancers.

13.
Biomolecules ; 12(12)2022 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-36551206

RESUMEN

Previously, we reported that MTH1 inhibitors TH588 and TH1579 selectively induce oxidative damage and kill Ras-expressing or -transforming cancer cells, as compared to non-transforming immortalized or primary cells. While this explains the impressive anti-cancer properties of the compounds, the molecular mechanism remains elusive. Several oncogenes induce replication stress, resulting in under replicated DNA and replication continuing into mitosis, where TH588 and TH1579 treatment causes toxicity and incorporation of oxidative damage. Hence, we hypothesized that oncogene-induced replication stress explains the cancer selectivity. To test this, we overexpressed c-Myc in human epithelial kidney cells (HA1EB), resulting in increased proliferation, polyploidy and replication stress. TH588 and TH1579 selectively kill c-Myc overexpressing clones, enforcing the cancer cell selective killing of these compounds. Moreover, the toxicity of TH588 and TH1579 in c-Myc overexpressing cells is rescued by transcription, proteasome or CDK1 inhibitors, but not by nucleoside supplementation. We conclude that the molecular toxicological mechanisms of how TH588 and TH1579 kill c-Myc overexpressing cells have several components and involve MTH1-independent proteasomal degradation of c-Myc itself, c-Myc-driven transcription and CDK activation.


Asunto(s)
Enzimas Reparadoras del ADN , Estrés Oxidativo , Humanos , Enzimas Reparadoras del ADN/metabolismo , Línea Celular Tumoral , Pirimidinas/farmacología , Daño del ADN
14.
J Inorg Biochem ; 235: 111924, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35841721

RESUMEN

Complexes Na3[Ag(NHCR)2], 2a-e and 2b'-c', where NHCR is a N-heterocyclic carbene of the 2,2'-(1H-2λ3,3λ4-imidazole-1,3-diyl)dicarboxylate type, were prepared by treatment of compounds HLR, 1a-e and 1b'-c' (2-(1-(carboxyalkyl)-1H-imidazol-3-ium-3-yl)carboxylate), with silver oxide in the presence of aqueous sodium hydroxide. They were characterized by analytical, spectroscopic (infrared, IR, 1H and 13C nuclear magnetic resonance, NMR, and circular dichroism) and X-ray methods (2a). In the solid state, the anionic part of complex 2a, [Ag(NHCH)2]3-, shows a linear disposition of Ccarbene-Ag-Ccarbene atoms and an eclipsed conformation of the two NHC ligands. The proposed bis(NHC) nature of the silver complexes was maintained in solution according to NMR and density functional theory (DFT) calculations. The cytotoxic activity of compounds 2 was evaluated against four cancer cell lines and one non-cancerous cell line and several structure-activity correlations were found for these complexes. For instance, the activity decreased when the bulkiness of the R alkyl group in Na3[Ag(NHCR)2] increased. More interesting is the detected chirality-anticancer relationship, where complexes Na3[Ag{(S,S)-NHCR}2] (R = Me, 2b; iPr, 2c) showed better anticancer activity than those of their enantiomeric derivatives Na3[Ag{(R,R)-NHCR}2] (R = Me, 2b'; iPr, 2c').


Asunto(s)
Antineoplásicos , Compuestos Heterocíclicos , Antineoplásicos/química , Antineoplásicos/farmacología , Cristalografía por Rayos X , Compuestos Heterocíclicos/química , Compuestos Heterocíclicos/farmacología , Metano/análogos & derivados , Estructura Molecular
15.
Nutrients ; 14(16)2022 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-36014884

RESUMEN

New therapies are needed to improve the low survival rates of patients with metastatic colon cancer. Evidence suggests that amino acid (AA) restriction can be used to target the altered metabolism of cancer cells. In this work, we evaluated the therapeutic potential of selective AA restriction in colon cancer. After observing anticancer activity in vitro, we prepared several artificial diets and evaluated their anticancer activity in two challenging animal models of metastatic colon cancer. These models were established by injecting CT26.WT murine colon cancer cells in the peritoneum (peritoneal dissemination) or in the tail vein (pulmonary metastases) of immunocompetent BALB/cAnNRj mice. Capecitabine, which is a first-line treatment for patients with metastatic colon cancer, was also evaluated in these models. Mice fed diet TC1 (a diet lacking 10 AAs) and diet TC5 (a diet with 6% casein, 5% glutamine, and 2.5% leucine) lived longer than untreated mice in both models; several mice survived the treatment. Diet TC5 was better than several cycles of capecitabine in both cancer models. Cysteine supplementation blocked the activity of diets TC1 and TC5, but cysteine restriction was not sufficient for activity. Our results indicated that artificial diets based on selective AA restriction have therapeutic potential for colon cancer.


Asunto(s)
Neoplasias del Colon , Neoplasias del Recto , Aminoácidos/metabolismo , Animales , Capecitabina/uso terapéutico , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/patología , Cisteína/uso terapéutico , Dieta , Ratones
16.
Int J Pharm ; 619: 121691, 2022 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-35331830

RESUMEN

Liposomes (Lip) are useful nanocarriers for drug delivery and cancer nanomedicine because of their ability to efficiently encapsulate drugs with different physical and chemical properties. The pH gradient between normal and tumoral tissues, and their rapid metabolism that induces hyperthermia encourage the development of pH- and thermo-sensitive Lip for delivering anticancer drugs. Nucleolipids have been studied as scaffolding material to prepare Lip, mainly for cancer therapy. Herein, we report for the first time the use of 1,2-dipalmitoyl-sn-glycero-3-(cytidine diphosphate) (DG-CDP) to develop pH/thermo-sensitive nucleolipid-containing stealth Lip stabilized by combination with 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and cholesterol, anchored with NH2-PEGylated gold nanoparticles (PEG-AuNPs, 15 nm) for triggering delivery of doxorubicin (Dox). The optimal composition of DPPC, DG-CDP and cholesterol (94:3:3) was established by Langmuir isotherms. Unloaded and Dox-loaded Lip and AuNPs-Lip exhibited nano-scale sizes (415-650 nm), acceptable polydispersity indexes (<0.33), spherical shapes, and negative Z-potential (-23 to -6.6 mV) due to the phosphate groups of DG-CDP, which allowed the anchoring with positively charged AuNPs. High EE% were achieved (>78%) and although efficient control in the Dox release towards different receptor media was observed, the release of Dox from PEG-AuNPs-Lip-Dox was significantly triggered at acidic pH and hyperthermia conditions, demonstrating its responsiveness to both stimuli. Dox-loaded Lip showed high cytotoxic activity against MDA-MB-231 breast cancer cells and SK-OV-3 ovarian cancer cells, suggesting that Dox was released from these nanocarriers over time. Overall, the liposomal formulations showed promising properties as stimuli-responsive nanocarriers for cancer nanomedicine, with prospects for hyperthermia therapy.


Asunto(s)
Antineoplásicos , Hipertermia Inducida , Nanopartículas del Metal , Neoplasias , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Colesterol/química , Citidina Difosfato/uso terapéutico , Doxorrubicina , Oro/uso terapéutico , Humanos , Concentración de Iones de Hidrógeno , Liposomas/química , Neoplasias/tratamiento farmacológico , Polietilenglicoles/química , Temperatura
17.
Mutagenesis ; 26(4): 489-98, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21382914

RESUMEN

Green tea and its major active constituent, (-)-epigallocatechin-3-gallate (EGCG), are in clinical trials for the prevention and treatment of several diseases such as cancer. DNA topoisomerase (topo) poisons are commonly prescribed anticancer drugs that kill cancer cells by inducing topo-DNA complexes. Using purified topoisomerases, previous in vitro studies have shown that EGCG induces the formation of topo-DNA complexes. Because the activity of a drug on purified topoisomerases does not always represent the activity in a cell, we have used an immunofluorescence technique that allows the visualisation of topo I- and topo II-DNA complexes produced in individual cells to evaluate the activity of EGCG on both enzymes. High levels of topo I- and topo II-DNA complexes were observed in K562 leukaemia cells exposed to EGCG. Similar levels of topo I- and topo II-DNA complexes were visualised in cells treated with gallic acid (GA) (the acid part of the EGCG ester). Pyrogallol (PG) also induced topo-DNA complexes with both enzymes, therefore suggesting that the activity of EGCG and GA is mediated by their PG moieties. Catalase prevented both the cytotoxicity and the formation of topo I- and topo II-DNA complexes induced by EGCG, GA, PG and myricetin (a PG-containing flavonoid recently shown to induce topo I- and topo II-DNA complexes in cells), indicating that hydrogen peroxide mediates these activities. Hydrogen peroxide induced topo I- and topo II (α and ß)-DNA complexes in a time- and dose-dependent manner. The formation of topo I- and topo II-DNA complexes in cells exposed to hydrogen peroxide correlated well with the induction of apoptosis, suggesting that the topo-DNA complexes induced at long exposure times by the compounds tested in our study may be apoptotic topo-DNA complexes. Finally, we report results suggesting that PG-containing drugs may selectively kill tumour cells by generating hydrogen peroxide.


Asunto(s)
Catequina/análogos & derivados , ADN-Topoisomerasas de Tipo II/metabolismo , ADN-Topoisomerasas de Tipo I/metabolismo , ADN/metabolismo , Ácido Gálico/farmacología , Peróxido de Hidrógeno/farmacología , Pirogalol/farmacología , Animales , Biocatálisis/efectos de los fármacos , Catalasa/metabolismo , Catequina/química , Catequina/farmacología , Muerte Celular/efectos de los fármacos , Línea Celular , Flavonoides/química , Flavonoides/farmacología , Ácido Gálico/química , Humanos , Ratones , Modelos Biológicos , Pirogalol/química , Té/química , Factores de Tiempo
18.
Pharmaceutics ; 13(7)2021 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-34199018

RESUMEN

Stimulus-responsive liposomes (L) for triggering drug release to the target site are particularly useful in cancer therapy. This research was focused on the evaluation of the effects of cholesterol levels in the performance of gold nanoparticles (AuNPs)-functionalized L for controlled doxorubicin (D) delivery. Their interfacial and morphological properties, drug release behavior against temperature changes and cytotoxic activity against breast and ovarian cancer cells were studied. Langmuir isotherms were performed to identify the most stable combination of lipid components. Two mole fractions of cholesterol (3.35 mol% and 40 mol%, L1 and L2 series, respectively) were evaluated. Thin-film hydration and transmembrane pH-gradient methods were used for preparing the L and for D loading, respectively. The cationic surface of L allowed the anchoring of negatively charged AuNPs by electrostatic interactions, even inducing a shift in the zeta potential of the L2 series. L exhibited nanometric sizes and spherical shape. The higher the proportion of cholesterol, the higher the drug loading. D was released in a controlled manner by diffusion-controlled mechanisms, and the proportions of cholesterol and temperature of release media influenced its release profiles. D-encapsulated L preserved its antiproliferative activity against cancer cells. The developed liposomal formulations exhibit promising properties for cancer treatment and potential for hyperthermia therapy.

19.
J Med Chem ; 64(14): 10350-10370, 2021 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-34236855

RESUMEN

NK1R antagonists, investigated for the treatment of several pathologies, have shown encouraging results in the treatment of several cancers. In the present study, we report on the synthesis of carbohydrate-based NK1R antagonists and their evaluation as anticancer agents against a wide range of cancer cells. All of the prepared compounds, derived from either d-galactose or l-arabinose, have shown high affinity and NK1R antagonistic activity with a broad-spectrum anticancer activity and an important selectivity, comparable to Cisplatin. This strategy has allowed us to identify the galactosyl derivative 14α, as an interesting hit exhibiting significant NK1R antagonist effect (kinact 0.209 ± 0.103 µM) and high binding affinity for NK1R (IC50 = 50.4 nM, Ki = 22.4 nM by measuring the displacement of [125I] SP from NK1R). Interestingly, this galactosyl derivative has shown marked selective cytotoxic activity against 12 different types of cancer cell lines.


Asunto(s)
Antineoplásicos/farmacología , Carbohidratos/farmacología , Receptores de Neuroquinina-1/metabolismo , Animales , Antineoplásicos/síntesis química , Antineoplásicos/química , Carbohidratos/síntesis química , Carbohidratos/química , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Cricetulus , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Estructura Molecular , Relación Estructura-Actividad
20.
Biomedicines ; 10(1)2021 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-35052721

RESUMEN

We recently screened a series of new aziridines ß-D-galactopyranoside derivatives for selective anticancer activity and identified 2-methyl-2,3-[N-(4-methylbenzenesulfonyl)imino]propyl 2,3-di-O-benzyl-4,6-O-(S)-benzylidene-ß-D-galactopyranoside (AzGalp) as the most promising compound. In this article, we explore the possible mechanisms involved in the cytotoxicity of this aziridine and evaluate its selective anticancer activity using cancer cells and normal cells from a variety of tissues. Our data show that AzGalp induces DNA damage (comet assay). Cells deficient in the nucleotide excision repair (NER) pathway were hypersensitive to the cytotoxicity of this compound. These results suggest that AzGalp induces bulky DNA adducts, and that cancer cells lacking a functional NER pathway may be particularly vulnerable to the anticancer effects of this aziridine. Several experiments revealed that neither the generation of oxidative stress nor the inhibition of glycolysis played a significant role in the cytotoxicity of AzGalp. Combinations of AzGalp with oxaliplatin or 5-fluorouracil slightly improved the ability of both anticancer drugs to selectively kill cancer cells. AzGalp also showed selective cytotoxicity against a panel of malignant cells versus normal cells; the highest selectivity was observed for two acute promyelocytic leukemia cell lines. Additional preclinical studies are necessary to evaluate the anticancer potential of AzGalp.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA