RESUMEN
BACKGROUND: Lymphocyte differentiation is regulated by coordinated actions of cytokines and signaling pathways. IL-21 activates STAT1, STAT3, and STAT5 and is fundamental for the differentiation of human B cells into memory cells and antibody-secreting cells. While STAT1 is largely nonessential and STAT3 is critical for this process, the role of STAT5 is unknown. OBJECTIVES: This study sought to delineate unique roles of STAT5 in activation and differentiation of human naive and memory B cells. METHODS: STAT activation was assessed by phospho-flow cytometry cell sorting. Differential gene expression was determined by RNA-sequencing and quantitative PCR. The requirement for STAT5B in B-cell and CD4+ T-cell differentiation was assessed using CRISPR-mediated STAT5B deletion from B-cell lines and investigating primary lymphocytes from individuals with germline STAT5B mutations. RESULTS: IL-21 activated STAT5 and strongly induced SOCS3 in human naive, but not memory, B cells. Deletion of STAT5B in B-cell lines diminished IL-21-mediated SOCS3 induction. PBMCs from STAT5B-null individuals contained expanded populations of immunoglobulin class-switched B cells, CD21loTbet+ B cells, and follicular T helper cells. IL-21 induced greater differentiation of STAT5B-deficient B cells into plasmablasts in vitro than B cells from healthy donors, correlating with higher expression levels of transcription factors promoting plasma cell formation. CONCLUSIONS: These findings reveal novel roles for STAT5B in regulating IL-21-induced human B-cell differentiation. This is achieved by inducing SOCS3 to attenuate IL-21 signaling, and BCL6 to repress class switching and plasma cell generation. Thus, STAT5B is critical for restraining IL-21-mediated B-cell differentiation. These findings provide insights into mechanisms underpinning B-cell responses during primary and subsequent antigen encounter and explain autoimmunity and dysfunctional humoral immunity in STAT5B deficiency.
Asunto(s)
Citocinas , Factor de Transcripción STAT5 , Diferenciación Celular , Citocinas/metabolismo , Homeostasis , Humanos , Isotipos de Inmunoglobulinas/metabolismo , ARN , Factor de Transcripción STAT5/genética , Factor de Transcripción STAT5/metabolismoRESUMEN
PURPOSE OF REVIEW: A comparative description of dysregulatory syndromes with mutations in signal transducer and activator of transcription (STAT) genes. RECENT FINDINGS: STAT 1, 3 and 5b loss of function (LOF) and gain of function (GOF) mutations are a heterogeneous group of genetic disorders that range from immunodeficiency (ID) to autoimmune disease (AID), depending on the underlying signalling pathway defect. Between them, there are clear overlapping and differences in clinical presentation and laboratory findings. SUMMARY: Dysregulatory syndromes due to LOF and GOF mutations in STAT1, 3 and 5b are a particular group of primary immunodeficiencies (PIDs) in which AID may be the predominant finding in addition to infections susceptibility. STAT1 GOF mutations were described as the major cause of chronic mucocutaneous candidiasis, while activating STAT3 mutations result in early-onset multiorgan autoimmunity and ID. Human STAT5b deficiency is a rare disease that also involves ID and severe growth failure. In recent years, the identification of the genes involved in these disorders allowed to differentiate these overlapping syndromes in order to choose the most effective therapeutic options.
Asunto(s)
Autoinmunidad/genética , Mutación con Ganancia de Función/fisiología , Síndromes de Inmunodeficiencia/genética , Mutación/fisiología , Factores de Transcripción STAT/fisiología , Niño , Análisis Mutacional de ADN , Mutación con Ganancia de Función/genética , Predisposición Genética a la Enfermedad , Humanos , Síndromes de Inmunodeficiencia/fisiopatología , Mutación/genética , Fenotipo , Pronóstico , Factores de Riesgo , Factores de Transcripción STAT/genética , Transducción de SeñalRESUMEN
BACKGROUND: Primary immunodeficiency diseases (PIDDs) are clinically and genetically heterogeneous disorders thus far associated with mutations in more than 300 genes. The clinical phenotypes derived from distinct genotypes can overlap. Genetic etiology can be a prognostic indicator of disease severity and can influence treatment decisions. OBJECTIVE: We sought to investigate the ability of whole-exome screening methods to detect disease-causing variants in patients with PIDDs. METHODS: Patients with PIDDs from 278 families from 22 countries were investigated by using whole-exome sequencing. Computational copy number variant (CNV) prediction pipelines and an exome-tiling chromosomal microarray were also applied to identify intragenic CNVs. Analytic approaches initially focused on 475 known or candidate PIDD genes but were nonexclusive and further tailored based on clinical data, family history, and immunophenotyping. RESULTS: A likely molecular diagnosis was achieved in 110 (40%) unrelated probands. Clinical diagnosis was revised in about half (60/110) and management was directly altered in nearly a quarter (26/110) of families based on molecular findings. Twelve PIDD-causing CNVs were detected, including 7 smaller than 30 Kb that would not have been detected with conventional diagnostic CNV arrays. CONCLUSION: This high-throughput genomic approach enabled detection of disease-related variants in unexpected genes; permitted detection of low-grade constitutional, somatic, and revertant mosaicism; and provided evidence of a mutational burden in mixed PIDD immunophenotypes.
Asunto(s)
Síndromes de Inmunodeficiencia/genética , Adolescente , Adulto , Anciano , Niño , Preescolar , Variaciones en el Número de Copia de ADN , Femenino , Genómica , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Lactante , Masculino , Persona de Mediana Edad , Adulto JovenRESUMEN
UNLABELLED: The signal transducer and activator of transcription (STAT) family of proteins regulate gene transcription in response to a variety of cytokines. STAT5B, in particular, plays an important role in T cells, where it is a key mediator of interleukin-2 (IL-2) induced responses. STAT5B deficiency causes a rare autosomal recessive disorder reported in only a handful of individuals. There are currently ten published cases of STAT5B deficiency, four of which are Argentinians. AIM: This is a report of more than 10 years follow up of the clinical and immunological features of three Argentinian STAT5B deficient patients. CONCLUSION: More than a decade of follow-up demonstrates that STAT5B deficiency is associated with various clinical pathologies that cause significant morbidity. Early diagnosis is critical for the prevention and improvement of clinical outcomes for STAT5B deficient patients.
Asunto(s)
Síndromes de Inmunodeficiencia/inmunología , Factor de Transcripción STAT5/deficiencia , Adulto , Argentina , Autoanticuerpos/sangre , Linfocitos B/inmunología , Femenino , Humanos , Inmunoglobulinas/sangre , Síndromes de Inmunodeficiencia/sangre , Síndromes de Inmunodeficiencia/genética , Recuento de Linfocitos , Mutación , Factor de Transcripción STAT5/genética , Linfocitos T/inmunología , Adulto JovenRESUMEN
Common variable immunodeficiency is a heterogeneous symptomatic group of inborn errors of immunity that mainly affects antibodies production and/or function, predisposing patients to recurrent and severe infections. More than half of them usually develop autoimmunity, lymphoproliferation, enteropathy, and malignancies. Among these conditions, chronic lung disease such as granulomatous-lymphocytic interstitial lung disease is one of the leading causes of death in these patients. Recently, many genes that play a key role in B and T cells' development, maintenance, and/or cytokines signaling pathways have been implicated in the pathogenesis of the disease. Here, we describe the first Argentinian patient presenting with common variable immunodeficiency and granulomatous-lymphocytic interstitial lung disease, harboring two in cis heterozygous variants in the SOCS1 gene.
RESUMEN
Macrophages are exceptionally flexible cells. The presence of inflammatory cytokines such as IFN-γ and TNF-α results in an M1 (CD68) activation, while cytokines such as IL-10 or TGF-ß induce the M2 (CD163) activation. Our aim was to study the behavior of peripheral cytokines involved in macrophage polarization and relate them with tissue findings to further comprehend the role of macrophages in EBV pediatric infection. We studied cytokine expression in tonsils and peripheral blood samples of children in different stages of infection. Peripheral cytokines were compared with macrophage polarization markers and viral protein expression in tonsils. Only IL-10 showed a negative correlation between compartments, exclusively in patients undergoing viral reactivation (R). Higher expressions of peripheral IL-1ß, IL-23, and IL-12p40 in R children were observed. Lower expressions of local and peripheral TNF-α in patients with broader expressions of latent and lytic viral proteins were demonstrated. In healthy carrier (HC) patients, IL-23 positively correlated with CD163, and IP-10 positively correlated with CD68. Our results indicated that EBV might modulate antigen expression in the presence of TNF-α and influence peripheral cytokine expression differently in each stage of infection. Moreover, peripheral cytokines might have a particular role in macrophage polarization in HC.
Asunto(s)
Citocinas , Infecciones por Virus de Epstein-Barr , Humanos , Niño , Citocinas/metabolismo , Interleucina-10/metabolismo , Herpesvirus Humano 4/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Macrófagos , Infecciones por Virus de Epstein-Barr/metabolismo , Interleucina-23RESUMEN
During recent years, the identification of monogenic mutations that cause sterile inflammation has expanded the spectrum of autoinflammatory diseases, clinical disorders characterized by uncontrolled systemic and organ-specific inflammation that, in some cases, can mirror infectious conditions. Early studies support the concept of innate immune dysregulation with a predominance of myeloid effector cell dysregulation, particularly neutrophils and macrophages, in causing tissue inflammation. However, recent discoveries have shown a complex overlap of features of autoinflammation and/or immunodeficiency contributing to severe disease phenotypes. Here, we describe the first Argentine patient with a newly described frameshift mutation in SAMD9L c.2666delT/p.F889Sfs*2 presenting with a complex phenotypic overlap of CANDLE-like features and severe infection-induced cytopenia and immunodeficiency. The patient underwent a fully matched unrelated HSCT and has since been in inflammatory remission 5 years post-HSCT.
RESUMEN
Inborn errors of immunity are a group of genetic disorders caused by mutations that affect the development and/or function of several compartments of the immune system, predisposing patients to infections, autoimmunity, allergy and malignancies. In this regard, mutations that affect proteins involved in trafficking, priming, docking, or membrane fusion will impair the exocytosis of lytic granules of effector NK and cytotoxic T lymphocytes. This may predispose patients to hemophagocytic lymphohistiocytosis, a life-threatening immune disorder characterized by systemic lymphocyte and macrophage activation, and increased levels of cytokines, which lead to an uncontrolled hyperinflammation state and progressive multiorgan damage. In this review, we will describe a clinical case and recent advances in inborn errors of immunity predisposing to hemophagocytic lymphohistiocytosis. Summary sentence: Review of recent advances in inborn errors of immunity predisposing to hemophagocytic lymphohistiocytosis.
Asunto(s)
Linfohistiocitosis Hemofagocítica , Niño , Citocinas/genética , Humanos , Linfohistiocitosis Hemofagocítica/genética , Mutación , Linfocitos T CitotóxicosRESUMEN
Chronic hepatitis C (CHC) pathogenic mechanisms as well as the participation of the immune response in the generation of liver damage are still a topic of interest. Here, we evaluated immune cell populations and cytokines in the liver and peripheral blood (PB) to elucidate their role in CHC pathogenesis. B, CTL, Th, Treg, Th1, Th17, and NK cell localization and frequency were evaluated on liver biopsies by immunohistochemistry, while frequency, differentiation, and functional status on PB were evaluated by flow cytometry. TNF-α, IL-23, IFN-γ, IL-1ß, IL-6, IL-8, IL-17A, IL-21, IL-10, and TGF-ß expression levels were quantified in fresh liver biopsy by RT-qPCR and in plasma by CBA/ELISA. Liver CTL and Th1 at the lobular area inversely correlated with viral load (r = -0.469, p =0.003 and r = -0.384, p = 0.040). Treg correlated with CTL and Th1 at the lobular area (r = 0.784, p < 0.0001; r = 0.436, p = 0.013). Th17 correlated with hepatic IL-8 (r = 0.52, p < 0.05), and both were higher in advanced fibrosis cases (Th17 p = 0.0312, IL-8 p = 0.009). Hepatic cytokines were higher in severe hepatitis cases (IL-1ß p = 0.026, IL-23 p = 0.031, IL-8 p = 0.002, TGF-ß, p= 0.037). Peripheral NK (p = 0.008) and NK dim (p = 0.018) were diminished, while NK bright (p = 0.025) was elevated in patients vs. donors. Naïve Th (p = 0.011) and CTL (p = 0.0007) were decreased, while activated Th (p = 0.0007) and CTL (p = 0.0003) were increased. IFN-γ production and degranulation activity in NK and CTL were normal. Peripheral cytokines showed an altered profile vs. donors, particularly elevated IL-6 (p = 0.008) and TGF-ß (p = 0.041). Total hepatic CTLs favored damage. Treg could not prevent fibrogenesis triggered by Th17 and IL-8. Peripheral T-lymphocyte differentiation stage shift, elevated cytokine levels and NK-cell count decrease would contribute to global disease.
Asunto(s)
Hepatitis C Crónica , Humanos , Inmunidad , Linfocitos T Reguladores , Células Th17RESUMEN
Primary immune regulation disorders lead to autoimmunity, allergy and inflammatory conditions due to defects in the immune homeostasis affecting different T, B and NK cell subsets. To improve our understanding of these conditions, in this work we analyzed the T and B cell compartments of 15 PID patients with dysregulation, including 3 patients with STAT1 GOF mutation, 7 patients with CVID with dysregulation, 3 patients with mutations in CTLA4, 1 patient with CD25 mutation and 1 patient with STAT5b mutation and compared them with healthy donors and with CVID patients without dysregulation. CD4+ and CD8+ T cells from the patients exhibited a significant decreased frequency of naïve and regulatory T cells with increased frequencies of activated cells, central memory CD4+ T cells, effector memory CD8+ T cells and terminal effector CD8+ T cells. Patients also exhibited a significantly increased frequency of circulating CD4+ follicular helper T cells, with altered frequencies of cTfh cell subsets. Such cTfh cells were skewed toward cTfh1 cells in STAT1 GOF, CTLA4, and CVID patients, while the STAT5b deficient patient presented a skew toward cTfh17 cells. These alterations confirmed the existence of an imbalance in the cTfh1/cTfh17 ratio in these diseases. In addition, we unraveled a marked dysregulation in the B cell compartment, characterized by a prevalence of transitional and naïve B cells in STAT1 GOF and CVID patients, and of switched-memory B cells and plasmablast cells in the STAT5b deficient patient. Moreover, we observed a significant positive correlation between the frequencies cTfh17 cells and switched-memory B cells and between the frequency of switched-memory B cells and the serum IgG. Therefore, primary immunodeficiencies with dysregulation are characterized by a skew toward an activated/memory phenotype within the CD4+ and CD8+ T cell compartment, accompanied by abnormal frequencies of Tregs, cTfh, and their cTfh1 and cTfh17 subsets that likely impact on B cell help for antibody production, which likely contributes to their autoimmune and inflammatory conditions. Therefore, assessment of these alterations by flow cytometry constitutes a simple and straightforward manner to improve diagnosis of these complex clinical entities that may impact early diagnosis and patients' treatment. Also, our findings unravel phenotypic alterations that might be associated, at least in part, with some of the clinical manifestations observed in these patients.
Asunto(s)
Centro Germinal/inmunología , Subgrupos Linfocitarios/inmunología , Monitorización Inmunológica/métodos , Células Precursoras de Linfocitos B/inmunología , Enfermedades de Inmunodeficiencia Primaria/inmunología , Células TH1/inmunología , Células Th17/inmunología , Adulto , Células Cultivadas , Femenino , Homeostasis , Humanos , Memoria Inmunológica , Masculino , Factor de Transcripción STAT1/metabolismoRESUMEN
BACKGROUNDUndifferentiated systemic autoinflammatory diseases (USAIDs) present diagnostic and therapeutic challenges. Chronic interferon (IFN) signaling and cytokine dysregulation may identify diseases with available targeted treatments.METHODSSixty-six consecutively referred USAID patients underwent underwent screening for the presence of an interferon signature using a standardized type-I IFN-response-gene score (IRG-S), cytokine profiling, and genetic evaluation by next-generation sequencing.RESULTSThirty-six USAID patients (55%) had elevated IRG-S. Neutrophilic panniculitis (40% vs. 0%), basal ganglia calcifications (46% vs. 0%), interstitial lung disease (47% vs. 5%), and myositis (60% vs. 10%) were more prevalent in patients with elevated IRG-S. Moderate IRG-S elevation and highly elevated serum IL-18 distinguished 8 patients with pulmonary alveolar proteinosis (PAP) and recurrent macrophage activation syndrome (MAS). Among patients with panniculitis and progressive cytopenias, 2 patients were compound heterozygous for potentially novel LRBA mutations, 4 patients harbored potentially novel splice variants in IKBKG (which encodes NF-κB essential modulator [NEMO]), and 6 patients had de novo frameshift mutations in SAMD9L. Of additional 12 patients with elevated IRG-S and CANDLE-, SAVI- or Aicardi-Goutières syndrome-like (AGS-like) phenotypes, 5 patients carried mutations in either SAMHD1, TREX1, PSMB8, or PSMG2. Two patients had anti-MDA5 autoantibody-positive juvenile dermatomyositis, and 7 could not be classified. Patients with LRBA, IKBKG, and SAMD9L mutations showed a pattern of IRG elevation that suggests prominent NF-κB activation different from the canonical interferonopathies CANDLE, SAVI, and AGS.CONCLUSIONSIn patients with elevated IRG-S, we identified characteristic clinical features and 3 additional autoinflammatory diseases: IL-18-mediated PAP and recurrent MAS (IL-18PAP-MAS), NEMO deleted exon 5-autoinflammatory syndrome (NEMO-NDAS), and SAMD9L-associated autoinflammatory disease (SAMD9L-SAAD). The IRG-S expands the diagnostic armamentarium in evaluating USAIDs and points to different pathways regulating IRG expression.TRIAL REGISTRATIONClinicalTrials.gov NCT02974595.FUNDINGThe Intramural Research Program of the NIH, NIAID, NIAMS, and the Clinical Center.
Asunto(s)
Enfermedades Autoinmunes , Interferón Tipo I , Interleucina-18 , Síndrome de Activación Macrofágica , Mutación , Paniculitis , Proteinosis Alveolar Pulmonar , Enfermedades Autoinmunes/genética , Enfermedades Autoinmunes/inmunología , Femenino , Humanos , Interferón Tipo I/genética , Interferón Tipo I/inmunología , Interleucina-18/genética , Interleucina-18/inmunología , Síndrome de Activación Macrofágica/genética , Síndrome de Activación Macrofágica/inmunología , Masculino , Paniculitis/genética , Paniculitis/inmunología , Proteinosis Alveolar Pulmonar/genética , Proteinosis Alveolar Pulmonar/inmunologíaRESUMEN
Natural killer (NK) cells play a pivotal role during immunity against viruses and circumstantial evidence also indicates that they can protect the host against developing tumors. Peripheral blood NK cells comprise CD56brightCD16lo/- cells that constitutively express CD25 (IL-2Rα) and CD56dimCD16hi cells that express CD25 upon activation. Using NK cells from two patients, one with a primary immunodeficiency characterized by a homozygous mutation in CD25 (born in year 2007 and studied since she was 3 years old) and one with a homozygous mutation in STAT5b (born in year 1992 and studied since she was 10 years old), we observed that the absence of IL-2 signaling through CD25 promotes the accumulation of CD56brightCD16high NK cells, and that CD56brightCD16lo, CD56brightCD16high, and CD56dimCD16high NK cells of this patient exhibited higher content of perforin and granzyme B, and proliferation capacity, compared to healthy donors. Also, CD56bright and CD56dim NK cells of this patient exhibited a reduced IFN-γ production in response to cytokine stimulation and increased degranulation against K562 cells. Also, the CD25-deficient patient presented a lower frequency of terminally differentiated NK cells in the CD56dimCD16hi NK subpopulation compared to the HD (assessed by CD57 and CD94 expression). Remarkably, CD56dimCD16high NK cells from both patients exhibited notoriously higher expression of CD62L compared to HD, suggesting that in the absence of IL-2 signaling through CD25 and STAT5b, NK cells fail to properly downregulate CD62L during their transition from CD56brightCD16lo/- to CD56dimCD16hi cells. Thus, we provide the first demonstration about the in vivo requirement of the integrity of the IL-2/CD25/STAT5b axis for proper human NK cell maturation.
RESUMEN
Germinal heterozygous activating STAT3 mutations represent a novel monogenic defect associated with multi-organ autoimmune disease and, in some cases, severe growth retardation. By using whole-exome sequencing, we identified two novel STAT3 mutations, p.E616del and p.C426R, in two unrelated pediatric patients with IGF-I deficiency and immune dysregulation. The functional analyses showed that both variants were gain-of-function (GOF), although they were not constitutively phosphorylated. They presented differences in their dephosphorylation kinetics and transcriptional activities under interleukin-6 stimulation. Both variants increased their transcriptional activities in response to growth hormone (GH) treatment. Nonetheless, STAT5b transcriptional activity was diminished in the presence of STAT3 GOF variants, suggesting a disruptive role of STAT3 GOF variants in the GH signaling pathway. This study highlights the broad clinical spectrum of patients presenting activating STAT3 mutations and explores the underlying molecular pathway responsible for this condition, suggesting that different mutations may drive increased activity by slightly different mechanisms.