Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Brain Behav Immun ; 102: 110-123, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35176443

RESUMEN

High-fat diet (HFD) consumption leads to obesity and a chronic state of low-grade inflammation, named metainflammation. Notably, metainflammation contributes to neuroinflammation due to the increased levels of circulating free fatty acids and cytokines. It indicates a strict interplay between peripheral and central counterparts in the pathogenic mechanisms of obesity-related mood disorders. In this context, the impairment of internal hypothalamic circuitry runs in tandem with the alteration of other brain areas associated with emotional processing (i.e., hippocampus and amygdala). Palmitoylethanolamide (PEA), an endogenous lipid mediator belonging to the N-acylethanolamines family, has been extensively studied for its pleiotropic effects both at central and peripheral level. Our study aimed to elucidate PEA capability in limiting obesity-induced anxiety-like behavior and neuroinflammation-related features in an experimental model of HFD-fed obese mice. PEA treatment promoted an improvement in anxiety-like behavior of obese mice and the systemic inflammation, reducing serum pro-inflammatory mediators (i.e., TNF-α, IL-1ß, MCP-1, LPS). In the amygdala, PEA increased dopamine turnover, as well as GABA levels. PEA also counteracted the overactivation of HPA axis, reducing the expression of hypothalamic corticotropin-releasing hormone and its type 1 receptor. Moreover, PEA attenuated the immunoreactivity of Iba-1 and GFAP and reduced pro-inflammatory pathways and cytokine production in both the hypothalamus and hippocampus. This finding, together with the reduced transcription of mast cell markers (chymase 1 and tryptase ß2) in the hippocampus, indicated the weakening of immune cell activation underlying the neuroprotective effect of PEA. Obesity-driven neuroinflammation was also associated with the disruption of blood-brain barrier (BBB) in the hippocampus. PEA limited the albumin extravasation and restored tight junction transcription modified by HFD. To gain mechanistic insight, we designed an in vitro model of metabolic injury using human neuroblastoma SH-SY5Y cells insulted by a mix of glucosamine and glucose. Here, PEA directly counteracted inflammation and mitochondrial dysfunction in a PPAR-α-dependent manner since the pharmacological blockade of the receptor reverted its effects. Our results strengthen the therapeutic potential of PEA in obesity-related neuropsychiatric comorbidities, controlling neuroinflammation, BBB disruption, and neurotransmitter imbalance involved in behavioral dysfunctions.


Asunto(s)
Sistema Hipotálamo-Hipofisario , Enfermedades Neuroinflamatorias , Amidas , Animales , Ansiedad/tratamiento farmacológico , Dieta Alta en Grasa , Etanolaminas , Sistema Hipotálamo-Hipofisario/metabolismo , Inflamación , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Obesidad/complicaciones , Obesidad/metabolismo , Ácidos Palmíticos , Sistema Hipófiso-Suprarrenal/metabolismo
2.
Int J Mol Sci ; 23(12)2022 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-35742813

RESUMEN

Recent evidence highlights Parkinson's disease (PD) initiation in the gut as the prodromal phase of neurodegeneration. Gut impairment due to microbial dysbiosis could affect PD pathogenesis and progression. Here, we propose a two-hit model of PD through ceftriaxone (CFX)-induced dysbiosis and gut inflammation before the 6-hydroxydopamine (6-OHDA) intrastriatal injection to mimic dysfunctional gut-associated mechanisms preceding PD onset. Therefore, we showed that dysbiosis and gut damage amplified PD progression, worsening motor deficits induced by 6-OHDA up to 14 days post intrastriatal injection. This effect was accompanied by a significant increase in neuronal dopaminergic loss (reduced tyrosine hydroxylase expression and increased Bcl-2/Bax ratio). Notably, CFX pretreatment also enhanced systemic and colon inflammation of dual-hit subjected mice. The exacerbated inflammatory response ran in tandem with a worsening of colonic architecture and gut microbiota perturbation. Finally, we demonstrated the beneficial effect of post-biotic sodium butyrate in limiting at once motor deficits, neuroinflammation, and colon damage and re-shaping microbiota composition in this novel dual-hit model of PD. Taken together, the bidirectional communication of the microbiota-gut-brain axis and the recapitulation of PD prodromal/pathogenic features make this new paradigm a useful tool for testing or repurposing new multi-target compounds in the treatment of PD.


Asunto(s)
Disbiosis , Enfermedad de Parkinson , Animales , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Butiratos/farmacología , Butiratos/uso terapéutico , Disbiosis/patología , Inflamación/patología , Ratones , Oxidopamina , Enfermedad de Parkinson/metabolismo
3.
Molecules ; 27(6)2022 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-35335213

RESUMEN

Human skin is the largest organ and the most external interface between the environment and the body. Vast communities of viruses, bacteria, archaea, fungi, and mites, collectively named the skin microbiome (SM), cover the skin surface and connected structures. Skin-resident microorganisms contribute to the establishment of cutaneous homeostasis and can modulate host inflammatory responses. Imbalances in the SM structure and function (dysbiosis) are associated with several skin conditions. Therefore, novel target for the skincare field could be represented by strategies, which restore or preserve the SM natural/individual balance. Several of the beneficial effects exerted by the SM are aroused by the microbial metabolite butyrate. Since butyrate exerts a pivotal role in preserving skin health, it could be used as a postbiotic strategy for preventing or treating skin diseases. Herein, we describe and share perspectives of the potential clinical applications of therapeutic strategies using the postbiotic butyrate against human skin diseases.


Asunto(s)
Microbiota , Enfermedades de la Piel , Butiratos/uso terapéutico , Disbiosis , Humanos , Piel/microbiología , Enfermedades de la Piel/tratamiento farmacológico , Enfermedades de la Piel/microbiología
4.
Allergy ; 76(5): 1398-1415, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33043467

RESUMEN

BACKGROUND: Food allergy (FA) is a growing health problem worldwide. Effective strategies are advocated to limit the disease burden. Human milk (HM) could be considered as a protective factor against FA, but its mechanisms remain unclear. Butyrate is a gut microbiota-derived metabolite able to exert several immunomodulatory functions. We aimed to define the butyrate concentration in HM, and to see whether the butyrate concentration detected in HM is able to modulate the mechanisms of immune tolerance. METHODS: HM butyrate concentration from 109 healthy women was assessed by GS-MS. The effect of HM butyrate on tolerogenic mechanisms was assessed in in vivo and in vitro models. RESULTS: The median butyrate concentration in mature HM was 0.75 mM. This butyrate concentration was responsible for the maximum modulatory effects observed in all experimental models evaluated in this study. Data from mouse model show that in basal condition, butyrate up-regulated the expression of several biomarkers of gut barrier integrity, and of tolerogenic cytokines. Pretreatment with butyrate significantly reduced allergic response in three animal models of FA, with a stimulation of tolerogenic cytokines, inhibition of Th2 cytokines production and a modulation of oxidative stress. Data from human cell models show that butyrate stimulated human beta defensin-3, mucus components and tight junctions expression in human enterocytes, and IL-10, IFN-γ and FoxP3 expression through epigenetic mechanisms in PBMCs from FA children. Furthermore, it promoted the precursors of M2 macrophages, DCs and regulatory T cells. CONCLUSION: The study's findings suggest the importance of butyrate as a pivotal HM compound able to protect against FA.


Asunto(s)
Hipersensibilidad a los Alimentos , Microbioma Gastrointestinal , Animales , Butiratos , Hipersensibilidad a los Alimentos/prevención & control , Tolerancia Inmunológica , Leche Humana
5.
FASEB J ; 34(1): 676-690, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31914696

RESUMEN

Sodium valproate (VPA), an antiepileptic drug, may cause dose- and time-dependent hepatotoxicity. However, its iatrogenic molecular mechanism and the rescue therapy are disregarded. Recently, it has been demonstrated that sodium butyrate (NaB) reduces hepatic steatosis, improving respiratory capacity and mitochondrial dysfunction in obese mice. Here, we investigated the protective effect of NaB in counteracting VPA-induced hepatotoxicity using in vitro and in vivo models. Human HepG2 cells and primary rat hepatocytes were exposed to high VPA concentration and treated with NaB. Mitochondrial function, lipid metabolism, and oxidative stress were evaluated, using Seahorse analyzer, spectrophotometric, and biochemical determinations. Liver protection by NaB was also evaluated in VPA-treated epileptic WAG/Rij rats, receiving NaB for 6 months. NaB prevented VPA toxicity, limiting cell oxidative and mitochondrial damage (ROS, malondialdehyde, SOD activity, mitochondrial bioenergetics), and restoring fatty acid oxidation (peroxisome proliferator-activated receptor α expression and carnitine palmitoyl-transferase activity) in HepG2 cells, primary hepatocytes, and isolated mitochondria. In vivo, NaB confirmed its activity normalizing hepatic biomarkers, fatty acid metabolism, and reducing inflammation and fibrosis induced by VPA. These data support the protective potential of NaB on VPA-induced liver injury, indicating it as valid therapeutic approach in counteracting this common side effect due to VPA chronic treatment.


Asunto(s)
Ácido Butírico/farmacología , Enfermedad Hepática Crónica Inducida por Sustancias y Drogas/tratamiento farmacológico , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Anticonvulsivantes/farmacología , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Crónica Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Crónica Inducida por Sustancias y Drogas/prevención & control , Células Hep G2 , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Humanos , Metabolismo de los Lípidos/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Oxidación-Reducción/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Ácido Valproico/farmacología
6.
FASEB J ; 34(1): 350-364, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31914699

RESUMEN

Peroxisome proliferator-activated receptor (PPAR)-α activation controls hepatic lipid homeostasis, stimulating fatty acid oxidation, and adapting the metabolic response to lipid overload and storage. Here, we investigate the effect of palmitoylethanolamide (PEA), an endogenous PPAR-α ligand, in counteracting hepatic metabolic inflexibility and mitochondrial dysfunction induced by high-fat diet (HFD) in mice. Long-term PEA administration (30 mg/kg/die per os) in HFD mice limited hepatic lipid accumulation, increased energy expenditure, and markedly reduced insulin resistance. In isolated liver mitochondria, we have demonstrated PEA capability to modulate mitochondrial oxidative capacity and energy efficiency, leading to the reduction of intracellular lipid accumulation and oxidative stress. Moreover, we have evaluated the effect of PEA on mitochondrial bioenergetics of palmitate-challenged HepG2 cells, using Seahorse analyzer. In vitro data showed that PEA recovered mitochondrial dysfunction and reduced lipid accumulation in insulin-resistant HepG2 cells, increasing fatty acid oxidation. Mechanistic studies showed that PEA effect on lipid metabolism was limited by AMP-activated protein kinase (AMPK) inhibition, providing evidence for a pivotal role of AMPK in PEA-induced adaptive metabolic setting. All these findings identify PEA as a modulator of hepatic lipid and glucose homeostasis, limiting metabolic inflexibility induced by nutrient overload.


Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Dieta Alta en Grasa/efectos adversos , Metabolismo Energético/efectos de los fármacos , Etanolaminas/farmacología , Hígado/metabolismo , Mitocondrias/metabolismo , Obesidad/tratamiento farmacológico , Ácidos Palmíticos/farmacología , Proteínas Quinasas Activadas por AMP/metabolismo , Amidas , Animales , Células Hep G2 , Humanos , Insulina/metabolismo , Resistencia a la Insulina , Metabolismo de los Lípidos , Hígado/efectos de los fármacos , Hígado/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Mitocondrias/efectos de los fármacos , Mitocondrias/patología , Obesidad/etiología , Obesidad/metabolismo , Obesidad/patología , PPAR alfa/metabolismo
7.
Epilepsia ; 62(2): 529-541, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33428780

RESUMEN

OBJECTIVE: A large number of studies have highlighted the important role of the gut microbiota in the pathophysiology of neurological disorders, suggesting that its manipulation might serve as a treatment strategy. We hypothesized that the gut microbiota participates in absence seizure development and maintenance in the WAG/Rij rat model and tested this hypothesis by evaluating potential gut microbiota and intestinal alterations in the model, as well as measuring the impact of microbiota manipulation using fecal microbiota transplantation (FMT). METHODS: Initially, gut microbiota composition and intestinal histology of WAG/Rij rats (a well-recognized genetic model of absence epilepsy) were studied at 1, 4, and 8 months of age in comparison to nonepileptic Wistar rats. Subsequently, in a second set of experiments, at 6 months of age, untreated Wistar or WAG/Rij rats treated with ethosuximide (ETH) were used as gut microbiota donors for FMT in WAG/Rij rats, and electroencephalographic (EEG) recordings were obtained over 4 weeks. At the end of FMT, stool and gut samples were collected, absence seizures were measured on EEG recordings, and microbiota analysis and histopathological examinations were performed. RESULTS: Gut microbiota analysis showed differences in beta diversity and specific phylotypes at all ages considered and significant variances in the Bacteroidetes/Firmicutes ratio between Wistar and WAG/Rij rats. FMT, from both Wistar and ETH-treated WAG/Rij donors to WAG/Rij rats, significantly decreased the number and duration of seizures. Histological results indicated that WAG/Rij rats were characterized by intestinal villi disruption and inflammatory infiltrates already at 1 month of age, before seizure occurrence; FMT partially restored intestinal morphology while also significantly modifying gut microbiota and concomitantly reducing absence seizures. SIGNIFICANCE: Our results demonstrate for the first time that the gut microbiota is modified and contributes to seizure occurrence in a genetic animal model of absence epilepsy and that its manipulation may be a suitable therapeutic target for absence seizure management.


Asunto(s)
Antibacterianos/farmacología , Anticonvulsivantes/farmacología , Epilepsia Tipo Ausencia/microbiología , Trasplante de Microbiota Fecal , Microbioma Gastrointestinal/efectos de los fármacos , Microbioma Gastrointestinal/genética , Animales , Bacteroidetes , Butiratos/metabolismo , Colon/patología , ADN Bacteriano/análisis , ADN Ribosómico/genética , Modelos Animales de Enfermedad , Electroencefalografía , Epilepsia Tipo Ausencia/genética , Epilepsia Tipo Ausencia/fisiopatología , Epilepsia Tipo Ausencia/terapia , Etosuximida/farmacología , Ácidos Grasos Volátiles/metabolismo , Firmicutes , Motilidad Gastrointestinal , Haptoglobinas/metabolismo , Íleon/patología , Propionatos/metabolismo , Precursores de Proteínas/metabolismo , Proteobacteria , Ratas , Ratas Wistar , Convulsiones/genética , Convulsiones/microbiología , Convulsiones/fisiopatología
8.
World J Urol ; 39(6): 2205-2215, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32852619

RESUMEN

PURPOSE: This study aimed to evaluate the efficacy of oxygen-enriched oil-based gel dressing on wound healing and postoperative outcome in children who underwent distal hypospadias repair. METHODS: We included all patients with distal hypospadias, who underwent Snodgrass urethroplasty and preputioplasty over an 18-months period. The patients were randomized in two groups according to the type of medication: oxygen-enriched oil-based gel (G1) and hyaluronic acid cream (G2). After discharge, parents changed the dressing twice a day for 2-3 weeks postoperatively. The patients were evaluated at 7, 14, 21, 30, 60 and 180 postoperative days and thereafter annually. RESULTS: One-hundred and fourteen patients (median age 18 months) were included in the study and randomized in two groups, each of 57 patients. The wound healing was significantly faster in G1 compared with G2 (p = 0.001). G1 reported significantly higher SWAS and modified HOPE scores compared with G2 (p = 0.001) at all steps of follow-up. No adverse skin reactions occurred. Foreskin dehiscence and re-operations rates were significantly lower in G1 compared with G2 (p = 0.001). Postoperative foreskin retractability was better in G1, with a significantly higher incidence of secondary phimosis in G2 (p = 0.001). The median treatment costs were significantly lower in G1 compared with G2 (p = 0.001). CONCLUSION: Postoperative dressing using oxygen-enriched oil-based gel was highly effective, promoting a faster wound healing in patients who underwent distal hypospadias repair. It reported a lower incidence of foreskin dehiscence and better foreskin retractability compared with the control group. It was cost-effective and clinically safe without allergy or intolerance to the product.


Asunto(s)
Vendajes , Hipospadias/cirugía , Oxígeno/administración & dosificación , Cicatrización de Heridas , Geles , Humanos , Hipospadias/patología , Lactante , Masculino , Aceites , Oxígeno/farmacología , Estudios Prospectivos , Método Simple Ciego , Resultado del Tratamiento , Cicatrización de Heridas/efectos de los fármacos
9.
Molecules ; 26(3)2021 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-33525625

RESUMEN

Worldwide obesity is a public health concern that has reached pandemic levels. Obesity is the major predisposing factor to comorbidities, including type 2 diabetes, cardiovascular diseases, dyslipidemia, and non-alcoholic fatty liver disease. The common forms of obesity are multifactorial and derive from a complex interplay of environmental changes and the individual genetic predisposition. Increasing evidence suggest a pivotal role played by alterations of gut microbiota (GM) that could represent the causative link between environmental factors and onset of obesity. The beneficial effects of GM are mainly mediated by the secretion of various metabolites. Short-chain fatty acids (SCFAs) acetate, propionate and butyrate are small organic metabolites produced by fermentation of dietary fibers and resistant starch with vast beneficial effects in energy metabolism, intestinal homeostasis and immune responses regulation. An aberrant production of SCFAs has emerged in obesity and metabolic diseases. Among SCFAs, butyrate emerged because it might have a potential in alleviating obesity and related comorbidities. Here we reviewed the preclinical and clinical data that contribute to explain the role of butyrate in this context, highlighting its crucial contribute in the diet-GM-host health axis.


Asunto(s)
Butiratos/farmacología , Obesidad/tratamiento farmacológico , Sustancias Protectoras/farmacología , Acetatos/farmacología , Animales , Fibras de la Dieta/metabolismo , Metabolismo Energético/efectos de los fármacos , Ácidos Grasos Volátiles/metabolismo , Microbioma Gastrointestinal/efectos de los fármacos , Humanos , Obesidad/metabolismo , Propionatos/farmacología
10.
Neurobiol Dis ; 121: 106-119, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30266286

RESUMEN

Chronic pain is associated with cognitive deficits. Palmitoylethanolamide (PEA) has been shown to ameliorate pain and pain-related cognitive impairments by restoring glutamatergic synapses functioning in the spared nerve injury (SNI) of the sciatic nerve in mice. SNI reduced mechanical and thermal threshold, spatial memory and LTP at the lateral entorhinal cortex (LEC)-dentate gyrus (DG) pathway. It decreased also postsynaptic density, volume and dendrite arborization of DG and increased the expression of metabotropic glutamate receptor 1 and 7 (mGluR1 and mGluR7), of the GluR1, GluR1s845 and GluR1s831 subunits of AMPA receptor and the levels of glutamate in the DG. The level of the endocannabinoid 2-arachidonoylglycerol (2-AG) was instead increased in the LEC. Chronic treatment with PEA, starting from when neuropathic pain was fully developed, was able to reverse mechanical allodynia and thermal hyperalgesia, memory deficit and LTP in SNI wild type, but not in PPARα null, mice. PEA also restored the level of glutamate and the expression of phosphorylated GluR1 subunits, postsynaptic density and neurogenesis. Altogether, these results suggest that neuropathic pain negatively affects cognitive behavior and related LTP, glutamatergic synapse and synaptogenesis in the DG. In these conditions PEA treatment alleviates pain and cognitive impairment by restoring LTP and synaptic maladaptative changes in the LEC-DG pathway. These outcomes open new perspectives for the use of the N-acylethanolamines, such as PEA, for the treatment of neuropathic pain and its central behavioural sequelae.


Asunto(s)
Disfunción Cognitiva/tratamiento farmacológico , Giro Dentado/efectos de los fármacos , Corteza Entorrinal/efectos de los fármacos , Homocisteína/análogos & derivados , Hiperalgesia/tratamiento farmacológico , Potenciación a Largo Plazo/efectos de los fármacos , Neuralgia/tratamiento farmacológico , Animales , Disfunción Cognitiva/etiología , Homocisteína/administración & dosificación , Ratones Endogámicos C57BL , Vías Nerviosas/efectos de los fármacos , Neuralgia/complicaciones , Neuronas/efectos de los fármacos , Neuronas/ultraestructura , Traumatismos de los Nervios Periféricos/complicaciones , Densidad Postsináptica/efectos de los fármacos , Densidad Postsináptica/ultraestructura , Receptores AMPA/metabolismo , Nervio Ciático/lesiones
11.
Mol Pharm ; 16(10): 4181-4189, 2019 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-31465230

RESUMEN

Paracetamol has been one of the most commonly used and prescribed analgesic drugs for more than a hundred years. Despite being generally well tolerated, it can result in high liver toxicity when administered in specific conditions, such as overdose, or in vulnerable individuals. We have synthesized and characterized a paracetamol galactosylated prodrug (PARgal) with the aim of improving both the pharmacodynamic and pharmacological profile of paracetamol. PARgal shows a range of physicochemical properties, solubility, lipophilicity, and chemical stability at differing physiological pH values and in human serum. PARgal could still be preclinically detected 2 h after administration, meaning that it displays reduced hepatic metabolism compared to paracetamol. In overdose conditions, PARgal has not shown any cytotoxic effect in in vitro analyses performed on human liver cells. Furthermore, when tested in an animal pain model, PARgal demonstrated a sustained analgesic effect up to the 12th hour after oral administration. These findings support the use of galactose as a suitable carrier in the development of prodrugs for analgesic treatment.


Asunto(s)
Acetaminofén/química , Analgésicos no Narcóticos/química , Analgésicos no Narcóticos/farmacología , Galactosa/química , Hiperalgesia/tratamiento farmacológico , Neoplasias Hepáticas/tratamiento farmacológico , Dolor Postoperatorio/tratamiento farmacológico , Profármacos/farmacología , Animales , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/patología , Proliferación Celular , Humanos , Hiperalgesia/patología , Neoplasias Hepáticas/patología , Masculino , Ratones , Dolor Postoperatorio/patología , Profármacos/química , Células Tumorales Cultivadas
12.
Int J Mol Sci ; 20(22)2019 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-31703254

RESUMEN

BACKGROUND: Transient Receptor Potential Melastatin-8 (TRPM8) is a non-selective cation channel activated by cold temperature and by cooling agents. Several studies have proved that this channel is involved in pain perception. Although some studies indicate that TRPM8 inhibition is necessary to reduce acute and chronic pain, it is also reported that TRPM8 activation produces analgesia. These conflicting results could be explained by extracellular Ca2+-dependent desensitization that is induced by an excessive activation. Likely, this effect is due to phosphatidylinositol 4,5-bisphosphate (PIP2) depletion that leads to modification of TRPM8 channel activity, shifting voltage dependence towards more positive potentials. This phenomenon needs further evaluation and confirmation that would allow us to understand better the role of this channel and to develop new therapeutic strategies for controlling pain. EXPERIMENTAL APPROACH: To understand the role of TRPM8 in pain perception, we tested two specific TRPM8-modulating compounds, an antagonist (IGM-18) and an agonist (IGM-5), in either acute or chronic animal pain models using male Sprague-Dawley rats or CD1 mice, after systemic or topical routes of administration. RESULTS: IGM-18 and IGM-5 were fully characterized in vivo. The wet-dog shake test and the body temperature measurements highlighted the antagonist activity of IGM-18 on TRPM8 channels. Moreover, IGM-18 exerted an analgesic effect on formalin-induced orofacial pain and chronic constriction injury-induced neuropathic pain, demonstrating the involvement of TRPM8 channels in these two pain models. Finally, the results were consistent with TRPM8 downregulation by agonist IGM-5, due to its excessive activation. CONCLUSIONS: TRPM8 channels are strongly involved in pain modulation, and their selective antagonist is able to reduce both acute and chronic pain.


Asunto(s)
Analgésicos , Percepción del Dolor/efectos de los fármacos , Dolor , Canales Catiónicos TRPM , Analgésicos/química , Analgésicos/farmacología , Animales , Modelos Animales de Enfermedad , Masculino , Ratones , Dolor/tratamiento farmacológico , Dolor/metabolismo , Dolor/patología , Dolor/fisiopatología , Ratas , Ratas Sprague-Dawley , Canales Catiónicos TRPM/antagonistas & inhibidores , Canales Catiónicos TRPM/metabolismo
13.
Brain Behav Immun ; 74: 166-175, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30193877

RESUMEN

Autism spectrum disorders (ASD) are a group of heterogeneous neurodevelopmental conditions characterized by impaired social interaction, and repetitive stereotyped behaviours. Interestingly, functional and inflammatory gastrointestinal diseases are often reported as a comorbidity in ASDs, indicating gut-brain axis as a novel emerging approach. Recently, a central role for peroxisome-proliferator activated receptor (PPAR)-α has been addressed in neurological functions, associated with the behaviour. Among endogenous lipids, palmitoylethanolamide (PEA), a PPAR-α agonist, has been extensively studied for its anti-inflammatory effects both at central and peripheral level. Based on this background, the aim of this study was to investigate the pharmacological effects of PEA on autistic-like behaviour of BTBR T+tf/J mice and to shed light on the contributing mechanisms. Our results showed that PEA reverted the altered behavioural phenotype of BTBR mice, and this effect was contingent to PPAR-α activation. Moreover, PEA was able to restore hippocampal BDNF signalling pathway, and improve mitochondrial dysfunction, both pathological aspects, known to be consistently associated with ASDs. Furthermore, PEA reduced the overall inflammatory state of BTBR mice, reducing the expression of pro-inflammatory cytokines at hippocampal, serum, and colonic level. The analysis of gut permeability and the expression of colonic tight junctions showed a reduction of leaky gut in PEA-treated BTBR mice. This finding together with PEA effect on gut microbiota composition suggests an involvement of microbiota-gut-brain axis. In conclusion, our results demonstrated a therapeutic potential of PEA in limiting ASD symptoms, through its pleiotropic mechanism of action, supporting neuroprotection, anti-inflammatory effects, and the modulation of gut-brain axis.


Asunto(s)
Trastorno del Espectro Autista/tratamiento farmacológico , Trastorno del Espectro Autista/metabolismo , Etanolaminas/farmacología , Ácidos Palmíticos/farmacología , Amidas , Animales , Trastorno Autístico/tratamiento farmacológico , Trastorno Autístico/metabolismo , Encéfalo/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Colon/metabolismo , Citocinas/metabolismo , Modelos Animales de Enfermedad , Etanolaminas/metabolismo , Microbioma Gastrointestinal/efectos de los fármacos , Hipocampo/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/efectos de los fármacos , PPAR alfa/efectos de los fármacos , PPAR alfa/metabolismo , Ácidos Palmíticos/metabolismo , Transducción de Señal/efectos de los fármacos
14.
Pharmacol Res ; 129: 482-490, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29158049

RESUMEN

Alzheimer's disease (AD) is a common form of dementia mainly characterized by the deposition of neurofibrillary tangles and ß-amyloid (Aß) peptides in the brain. Additionally, increasing evidence demonstrates that a neuro-inflammatory state plays a key role in the development of this disease. Beside synthetic drugs, the use of natural compounds represents an alternative for the development of new potential drugs for the treatment of AD. Among these, the root of Salvia miltiorhiza Bunge (also known as Danshen) used for the treatment of cardiovascular, cerebrovascular disease and CNS functional decline in Chinese traditional medicine is one of the most representative examples. We therefore evaluated the effects of tanshinone IIA (TIIA) and cryptotanshinone (CRY) (the two major lipophilic compounds of Danshen) in a non-genetic mouse model of ß-amyloid (Aß)-induced AD, which is mainly characterized by reactive gliosis and neuro-inflammation in the brain. To this aim, mice were injected intracerebroventricularly (i.c.v.) with Aß1-42 peptide (3µg/3µl) and after with TIIA and CRY (1, 3, or 10mg/kg) intraperitoneally (i.p.) 3 times weekly for 21days following the induction of experimental AD. Spatial working memory was assessed as a measure of short-term memory in mice, whereas the level of GFAP, S100ß, COX-2, iNOS and NF-kBp65 monitored by western blot and ELISA assay, were selected as markers of reactive gliosis and neuro-inflammation. Finally, by docking studies, the modulation of key pro-inflammatory enzymes and pathways involved in the AD-related neuro-inflammation were also investigated. Results indicate that TIIA and CRY alleviate memory decline in Aß1-42-injected mice, in a dose dependent manner. Moreover, the analysis of gliosis-related and neuro-inflammatory markers in the hippocampal tissues reveal a remarkable reduction in the expression of GFAP, S100ß, COX-2, iNOS and NF-kBp65 after CRY (10mg/kg) treatment. These effects were less evident, but still significant, after TIIA (10mg/kg). Finally, in silico analysis also revealed that both compounds were able to interact with the binding sites of NF-kBp65 endorsing the data from biochemical analysis. We conclude that TIIA and CRY display anti-inflammatory and neuroprotective effect in a non-genetic mouse model of AD, thus playing a role in slowing down the course and onset of AD.


Asunto(s)
Abietanos/uso terapéutico , Enfermedad de Alzheimer/tratamiento farmacológico , Antiinflamatorios/uso terapéutico , Fármacos Neuroprotectores/uso terapéutico , Fenantrenos/uso terapéutico , Péptidos beta-Amiloides , Animales , Modelos Animales de Enfermedad , Masculino , Memoria/efectos de los fármacos , Ratones , Fragmentos de Péptidos
15.
Mar Drugs ; 16(11)2018 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-30400299

RESUMEN

Although the chemical warfare between invasive and native species has become a central problem in invasion biology, the molecular mechanisms by which bioactive metabolites from invasive pests influence local communities remain poorly characterized. This study demonstrates that the alkaloid caulerpin (CAU)-a bioactive component of the green alga Caulerpa cylindracea that has invaded the entire Mediterranean basin-is an agonist of peroxisome proliferator-activated receptors (PPARs). Our interdisciplinary study started with the in silico prediction of the ligand-protein interaction, which was then validated by in vivo, ex vivo and in vitro assays. On the basis of these results, we candidate CAU as a causal factor of the metabolic and behavioural disorders observed in Diplodus sargus, a native edible fish of high ecological and commercial relevance, feeding on C. cylindracea. Moreover, given the considerable interest in PPAR activators for the treatment of relevant human diseases, our findings are also discussed in terms of a possible nutraceutical/pharmacological valorisation of the invasive algal biomasses, supporting an innovative strategy for conserving biodiversity as an alternative to unrealistic campaigns for the eradication of invasive pests.


Asunto(s)
Factores Biológicos/farmacología , Caulerpa/metabolismo , Enfermedades de los Peces/etiología , Indoles/toxicidad , Especies Introducidas , Perciformes/fisiología , Receptores Activados del Proliferador del Peroxisoma/agonistas , Animales , Factores Biológicos/metabolismo , Simulación por Computador , Ecotoxicología , Enfermedades de los Peces/metabolismo , Cadena Alimentaria , Indoles/metabolismo , Ligandos , Modelos Biológicos , Receptores Activados del Proliferador del Peroxisoma/metabolismo
16.
Appl Environ Microbiol ; 83(19)2017 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-28733284

RESUMEN

We recently demonstrated that cow's milk fermented with the probiotic Lactobacillus paracasei CBA L74 (FM-CBAL74) reduces the incidence of respiratory and gastrointestinal tract infections in young children attending school. This effect apparently derives from a complex regulation of non-immune and immune protective mechanisms. We investigated whether FM-CBAL74 could regulate gut microbiota composition and butyrate production. We randomly selected 20 healthy children (12 to 48 months) from the previous randomized controlled trial, before (t0) and after 3 months (t3) of dietary treatment with FM-CBAL74 (FM) or placebo (PL). Fecal microbiota was profiled using 16S rRNA gene amplicon sequencing, and the fecal butyrate concentration was also measured. Microbial alpha and beta diversities were not significantly different between groups prior to treatment. FM-CBAL74 but not PL treatment increased the relative abundance of Lactobacillus Individual Blautia, Roseburia, and Faecalibacterium oligotypes were associated with FM-CBAL74 treatment and demonstrated correlative associations with immune biomarkers. Accordingly, PICRUSt analysis predicted an increase in the proportion of genes involved in butyrate production pathways, consistent with an increase in fecal butyrate observed only in the FM group. Dietary supplementation with FM-CBAL74 induces specific signatures in gut microbiota composition and stimulates butyrate production. These effects are associated with changes in innate and acquired immunity.IMPORTANCE The use of a fermented milk product containing the heat-killed probiotic strain Lactobacillus paracasei CBAL74 induces changes in the gut microbiota, promoting the development of butyrate producers. These changes in the gut microbiota composition correlate with increased levels of innate and acquired immunity biomarkers.


Asunto(s)
Bacterias/aislamiento & purificación , Ácido Butírico/metabolismo , Microbioma Gastrointestinal , Lacticaseibacillus paracasei/metabolismo , Probióticos/administración & dosificación , Animales , Bacterias/clasificación , Bacterias/genética , Bovinos , Preescolar , Productos Lácteos Cultivados/análisis , Productos Lácteos Cultivados/microbiología , Femenino , Fermentación , Tracto Gastrointestinal/microbiología , Humanos , Lactante , Lacticaseibacillus paracasei/química , Masculino
17.
Pediatr Allergy Immunol ; 28(3): 230-237, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-27992668

RESUMEN

BACKGROUND: Extensively hydrolyzed casein formula (EHCF) has been proposed for the prevention and is commonly used for the treatment of cow's milk allergy (CMA). The addition of the probiotic Lactobacillus rhamnosus GG (LGG) to EHCF may induce faster acquisition of tolerance to cow's milk. The mechanisms underlying this effect are largely unexplored. We investigated the effects of EHCF alone or in combination with LGG on ß-lactoglobulin (BLG) sensitization in mice. METHODS: Three-week-old C3H/HeOuJ mice were sensitized by oral administration of BLG using cholera toxin as adjuvant at weekly intervals for 5 weeks (sensitization period). Two experimental phases were conducted: (i) EHCF or EHCF+LGG given daily, starting 2 weeks before the sensitization period and then given daily for 5 weeks and (ii) EHCF or EHCF+LGG given daily for 4 weeks, starting 1 week after the sensitization period. Diet free of cow's milk protein was used as control. Acute allergic skin response, anaphylactic symptom score, body temperature, intestinal permeability, anti-BLG serum IgE, and interleukin (IL)-4, IL-5, IL-10, IL-13, IFN-γ mRNA expression were analyzed. Peptide fractions of EHCF were characterized by reversed-phase (RP)-HPLC, MALDI-TOF mass spectrometry, and nano-HPLC/ESI-MS/MS. RESULTS: Extensively hydrolyzed casein formula administration before or after BLG-induced sensitization significantly reduced acute allergic skin reaction, anaphylactic symptom score, body temperature decrease, intestinal permeability increase, IL-4, IL-5, IL-13, and anti-BLG IgE production. EHCF increased expression of IFN-γ and IL-10. Many of these effects were significantly enhanced by LGG supplementation. The peptide panels were similar between the two study formulas and contained sequences that could have immunoregulatory activities. CONCLUSIONS: The data support dietary intervention with EHCF for CMA prevention and treatment through a favorable immunomodulatory action. The observed effects are significantly enhanced by LGG supplementation.


Asunto(s)
Caseínas/administración & dosificación , Lacticaseibacillus rhamnosus/inmunología , Lactoglobulinas/inmunología , Hipersensibilidad a la Leche/terapia , Probióticos/uso terapéutico , Animales , Caseínas/inmunología , Bovinos , Cromatografía Líquida de Alta Presión , Citocinas/metabolismo , Inmunoglobulina E/sangre , Ratones , Ratones Endogámicos C3H , Leche , Hipersensibilidad a la Leche/inmunología , Reacción en Cadena en Tiempo Real de la Polimerasa , Espectrometría de Masas en Tándem
18.
Pharmacol Res ; 103: 279-91, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26675718

RESUMEN

In the present study we investigated the role of sodium butyrate (butyrate), and its more palatable derivative, the N-(1-carbamoyl-2-phenyl-ethyl) butyramide (FBA), in animal models of acute and chronic pain. We found that oral administrations of butyrate (10-200mg/Kg) or equimolecular FBA (21.2-424mg/Kg) reduced visceral pain in a dose- and time-dependent manner. Both drugs were also effective in the formalin test, showing an antinociceptive effect. This analgesic effect was blocked by glibenclamide, suggesting the involvement of ATP-dependent K(+) channels. Moreover, following repeated administration butyrate (100-200mg/Kg) and FBA (212-424mg/Kg) retained their analgesic properties in a model of neuropathic pain, reducing mechanical and thermal hyperalgesia in the chronic constriction injury (CCI) model. The involvement of peroxisome proliferator-activated receptor (PPAR) -α and -γ for the analgesic effect of butyrate was also investigated by using PPAR-α null mice or the PPAR-γ antagonist GW9662. Western blot analysis, confirmed the role of peroxisome receptors in butyrate effects, evidencing the increase of PPAR-α and -γ expression, associated to the reduction of inflammatory markers (COX-2, iNOS, TNF-α and cFOS). In conclusion, we describe the role of butyrate-based drugs in pain, identifying different and converging non-genomic and genomic mechanisms of action, which cooperate in nociception maintenance.


Asunto(s)
Amidas/farmacología , Analgésicos/farmacología , Ácido Butírico/farmacología , Dolor/metabolismo , Ácido Acético , Amidas/uso terapéutico , Analgésicos/uso terapéutico , Anilidas/farmacología , Animales , Ácido Butírico/uso terapéutico , Formaldehído , Calor , Hiperalgesia/tratamiento farmacológico , Hiperalgesia/metabolismo , Caolín , Sulfato de Magnesio , Masculino , Ratones , Ratones Noqueados , PPAR alfa/genética , PPAR alfa/metabolismo , PPAR gamma/antagonistas & inhibidores , PPAR gamma/metabolismo , Dolor/tratamiento farmacológico , Estimulación Física , Nervio Ciático/lesiones , Médula Espinal/metabolismo
19.
Pharmacol Res ; 113(Pt A): 276-289, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27616549

RESUMEN

Several pathogenetic factors have been involved in the onset and progression of Parkinson's disease (PD), including inflammation, oxidative stress, unfolded protein accumulation, and apoptosis. Palmitoylethanolamide (PEA), an endogenous N-acylethanolamine, has been shown to be a neuroprotective and anti-inflammatory molecule, acting as a peroxisome proliferator activated receptor (PPAR)-α agonist. In this study we investigated the effects of PEA on behavioral alterations and the underlying pathogenic mechanisms in the 6-hydroxydopamine (6-OHDA)-induced model of PD in male mice. Additionally, we showed the involvement of PPAR-α in PEA protective effect on SH-SY5Y neuroblastoma against 6-OHDA damage. Here, we report that PEA (3-30mg/kg/days.c.) improved behavioral impairments induced by unilateral intrastriatal injection of 6-OHDA. This effect was accompanied by a significant increase in tyrosine hydroxylase expression at striatal level, indicating PEA preserving effect on dopaminergic neurons. Moreover, we found a reduction in the expression of pro-inflammatory enzymes, i.e. inducible nitric oxide synthase and cyclooxygenase-2, a modulation between pro- and anti-apoptotic markers, suggestive of PEA capability in controlling neuroinflammation and cell death. Interestingly, PEA also showed protective scavenging effect, through superoxide dismutase induction, and dampened unfolding protein response, interfering on glucose-regulated protein 78 expression and PERK-eIF2α pathway. Similar data were found in in vitro studies, where PEA treatment was found to rescue SH-SY5Y neuroblastoma cells from 6-OHDA-induced damage and death, partly by inhibiting endoplasmic reticulum stress detrimental response. Therefore, PEA, counteracting the pathogenetic aspects involved in the development of PD, showed its therapeutic potential, possibly integrating current treatments correcting dopaminergic deficits and motor dysfunction.


Asunto(s)
Estrés del Retículo Endoplásmico/efectos de los fármacos , Etanolaminas/farmacología , Fármacos Neuroprotectores/farmacología , Síndromes de Neurotoxicidad/tratamiento farmacológico , Oxidopamina/farmacología , Ácidos Palmíticos/farmacología , Amidas , Animales , Apoptosis/efectos de los fármacos , Muerte Celular/efectos de los fármacos , Ciclooxigenasa 2/metabolismo , Modelos Animales de Enfermedad , Dopamina/metabolismo , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/metabolismo , Masculino , Ratones , Neuroblastoma/metabolismo , Síndromes de Neurotoxicidad/metabolismo , Óxido Nítrico Sintasa/metabolismo , Estrés Oxidativo/efectos de los fármacos , PPAR alfa/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Superóxido Dismutasa/metabolismo , Tirosina 3-Monooxigenasa/metabolismo
20.
J Nutr ; 145(6): 1202-10, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25926411

RESUMEN

BACKGROUND: Although gut microbiota perturbation is recognized as a main contributing factor to the pathogenesis of inflammatory bowel disease, synbiotic therapies, as prevention or treatment, have remained overlooked. OBJECTIVE: To verify whether Lactobacillus paracasei B21060-based synbiotic therapy could prevent or repair colon damage in a mouse model of colitis, we performed treatments before and after colitis induction. METHODS: The experimental study lasted 19 d. Experimental colitis was induced in BALB/c mice by giving them dextran sodium sulfate (DSS, 2.5%) in drinking water (days 7-12) followed by DSS-free water (days 13-19) (DSS group). L. paracasei B21060 (2.5 × 10(7) bacteria/10 g body weight) was orally administered 7 d before DSS [synbiotic as preventive treatment (P-SYN) group] or 2 d after DSS [synbiotic as therapeutic treatment (T-SYN) group] until day 19. Another group was not treated with DSS or synbiotic and was given tap water (control group), for a total of 4 groups. RESULTS: Compared with the DSS group, both synbiotic-treated groups had significantly less pronounced weight loss and colon damage. Consistently, mRNA levels of chemokine (C-C motif) ligand 5 in the colon were reduced in both P-SYN and T-SYN mice compared with the DSS group (51%, P < 0.05 and 72%, P < 0.001, respectively). In the P-SYN and T-SYN groups, neutrophil elastase transcription was also reduced (51%, P < 0.01 and 59%, P < 0.001, respectively). Accordingly, oxidative/nitrosative stress was lower in P-SYN and T-SYN mice than in the DSS group. In P-SYN and T-SYN mice, colonic gene expression of tumor necrosis factor (47%, P < 0.01 and 61%, P < 0.001, respectively) and prostaglandin-endoperoxide synthase 2 (45%, P < 0.01 and 35%, P < 0.05, respectively) was lower, whereas interleukin 10 mRNA was doubled compared with the DSS group (both P < 0.5). Remarkably, epithelial barrier integrity (zonulin and occludin) and gut protection (ß-defensin and mucin expression) were completely restored in P-SYN and T-SYN mice. CONCLUSIONS: Our data highlight the beneficial effects of this synbiotic formulation in acutely colitic mice, suggesting that it may have therapeutic and possibly preventive efficacy in human colitis.


Asunto(s)
Colitis/terapia , Tracto Gastrointestinal/microbiología , Lactobacillus , Simbióticos , Animales , Colitis/prevención & control , Ciclooxigenasa 2/genética , Ciclooxigenasa 2/metabolismo , Sulfato de Dextran , Modelos Animales de Enfermedad , Tracto Gastrointestinal/metabolismo , Inflamación/prevención & control , Inflamación/terapia , Interleucina-10/genética , Interleucina-10/metabolismo , Masculino , Malondialdehído/metabolismo , Ratones , Ratones Endogámicos BALB C , Mucina-1/genética , Mucina-1/metabolismo , Estrés Oxidativo , PPAR gamma/genética , PPAR gamma/metabolismo , Peroxidasa/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Regulación hacia Arriba , beta-Defensinas/genética , beta-Defensinas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA