Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 147
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Neurosci ; 43(26): 4941-4954, 2023 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-37253603

RESUMEN

Synaptic loss is intrinsically linked to Alzheimer's disease (AD) neuropathology and symptoms, but its direct impact on clinical symptoms remains elusive. The postsynaptic protein Shank3 (SH3 and multiple ankyrin repeat domains) is of particular interest, as the loss of a single allele of the SHANK3 gene is sufficient to cause profound cognitive symptoms in children. We thus sought to determine whether a SHANK3 deficiency could contribute to the emergence or worsening of AD symptoms and neuropathology. We first found a 30%-50% postmortem loss of SHANK3a associated with cognitive decline in the parietal cortex of individuals with AD. To further probe the role of SHANK3 in AD, we crossed male and female 3xTg-AD mice modelling Aß and tau pathologies with Shank3a-deficient mice (Shank3Δex4-9). We observed synergistic deleterious effects of Shank3a deficiency and AD neuropathology on object recognition memory at 9, 12, and 18 months of age and on anxious behavior at 9 and 12 months of age in hemizygous Shank3Δex4-9-3xTg-AD mice. In addition to the expected 50% loss of Shank3a, levels of other synaptic proteins, such as PSD-95, drebrin, and homer1, remained unchanged in the parietotemporal cortex of hemizygous Shank3Δex4-9 animals. However, Shank3a deficiency increased the levels of soluble Aß42 and human tau at 18 months of age compared with 3xTg-AD mice with normal Shank3 expression. The results of this study in human brain samples and in transgenic mice are consistent with the hypothesis that Shank3 deficiency makes a key contribution to cognitive impairment in AD.SIGNIFICANCE STATEMENT Although the loss of several synaptic proteins has been described in Alzheimer's disease (AD), it remains unclear whether their reduction contributes to clinical symptoms. The results of this study in human samples show lower levels of SHANK3a in AD brain, correlating with cognitive decline. Data gathered in a novel transgenic mouse suggest that Shank3a deficiency synergizes with AD neuropathology to induce cognitive impairment, consistent with a causal role in AD. Therefore, treatment aiming at preserving Shank3 in the aging brain may be beneficial to prevent AD.


Asunto(s)
Enfermedad de Alzheimer , Animales , Femenino , Humanos , Masculino , Ratones , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Cognición , Modelos Animales de Enfermedad , Ratones Transgénicos , Proteínas de Microfilamentos , Proteínas del Tejido Nervioso , Proteínas tau/genética , Proteínas tau/metabolismo
2.
Neurobiol Dis ; 198: 106526, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38734152

RESUMEN

Alzheimer's disease (AD) is a multifactorial neurodegenerative disease with a complex origin, thought to involve a combination of genetic, biological and environmental factors. Insulin dysfunction has emerged as a potential factor contributing to AD pathogenesis, particularly in individuals with diabetes, and among those with insulin deficiency or undergoing insulin therapy. The intraperitoneal administration of streptozotocin (STZ) is widely used in rodent models to explore the impact of insulin deficiency on AD pathology, although prior research predominantly focused on young animals, with no comparative analysis across different age groups. Our study aimed to fill this gap by analyzing the impact of insulin dysfunction in 7 and 23 months 3xTg-AD mice, that exhibit both amyloid and tau pathologies. Our objective was to elucidate the age-specific consequences of insulin deficiency on AD pathology. STZ administration led to insulin deficiency in the younger mice, resulting in an increase in cortical amyloid-ß (Aß) and tau aggregation, while tau phosphorylation was not significantly affected. Conversely, older mice displayed an unexpected resilience to the peripheral metabolic impact of STZ, while exhibiting an increase in both tau phosphorylation and aggregation without significantly affecting amyloid pathology. These changes were paralleled with alterations in signaling pathways involving tau kinases and phosphatases. Several markers of blood-brain barrier (BBB) integrity declined with age in 3xTg-AD mice, which might have facilitated a direct neurotoxic effect of STZ in older mice. Overall, our research confirms the influence of insulin signaling dysfunction on AD pathology, but also advises careful interpretation of data related to STZ-induced effects in older animals.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Ratones Transgénicos , Estreptozocina , Proteínas tau , Animales , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/genética , Proteínas tau/metabolismo , Ratones , Péptidos beta-Amiloides/metabolismo , Modelos Animales de Enfermedad , Insulina/metabolismo , Envejecimiento/metabolismo , Masculino , Factores de Edad , Fosforilación , Encéfalo/metabolismo , Encéfalo/patología
3.
Brain ; 146(1): 75-90, 2023 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-36280236

RESUMEN

Central response to insulin is suspected to be defective in Alzheimer's disease. As most insulin is secreted in the bloodstream by the pancreas, its capacity to regulate brain functions must, at least partly, be mediated through the cerebral vasculature. However, how insulin interacts with the blood-brain barrier and whether alterations of this interaction could contribute to Alzheimer's disease pathophysiology both remain poorly defined. Here, we show that human and murine cerebral insulin receptors (INSRs), particularly the long isoform INSRα-B, are concentrated in microvessels rather than in the parenchyma. Vascular concentrations of INSRα-B were lower in the parietal cortex of subjects diagnosed with Alzheimer's disease, positively correlating with cognitive scores, leading to a shift towards a higher INSRα-A/B ratio, consistent with cerebrovascular insulin resistance in the Alzheimer's disease brain. Vascular INSRα was inversely correlated with amyloid-ß plaques and ß-site APP cleaving enzyme 1, but positively correlated with insulin-degrading enzyme, neprilysin and P-glycoprotein. Using brain cerebral intracarotid perfusion, we found that the transport rate of insulin across the blood-brain barrier remained very low (<0.03 µl/g·s) and was not inhibited by an insulin receptor antagonist. However, intracarotid perfusion of insulin induced the phosphorylation of INSRß that was restricted to microvessels. Such an activation of vascular insulin receptor was blunted in 3xTg-AD mice, suggesting that Alzheimer's disease neuropathology induces insulin resistance at the level of the blood-brain barrier. Overall, the present data in post-mortem Alzheimer's disease brains and an animal model of Alzheimer's disease indicate that defects in the insulin receptor localized at the blood-brain barrier strongly contribute to brain insulin resistance in Alzheimer's disease, in association with ß-amyloid pathology.


Asunto(s)
Enfermedad de Alzheimer , Resistencia a la Insulina , Humanos , Ratones , Animales , Enfermedad de Alzheimer/patología , Receptor de Insulina , Péptidos beta-Amiloides/metabolismo , Encéfalo/patología , Insulina/farmacología , Modelos Animales de Enfermedad
4.
Lipids Health Dis ; 23(1): 59, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38414008

RESUMEN

Cancer cells need constant supplies of lipids to survive and grow. Lipid dependence has been observed in various types of cancer, including high-grade serous ovarian carcinomas (HGSOC), which is a lethal form of gynecological malignancy. ANGPTL3, PCSK9, and Apo CIII are pivotal lipid-modulating factors, and therapeutic antibodies have been developed against each one (Evinacumab, Evolocumab and Volanesorsen, respectively). The roles -if any- of ANGPTL3, PCSK9, and Apo CIII in HGSOC are unclear. Moreover, levels of these lipid-modulating factors have never been reported before in HGSOC. In this study, circulating levels of ANGPTL3, PCSK9, and Apo CIII, along with lipid profiles, are examined to verify whether one or many of these lipid-regulating factors are associated with HGSOC. Methods ELISA kits were used to measure ANGPTL3, PCSK9 and Apo CIII levels in plasma samples from 31 women with HGSOC and 40 women with benign ovarian lesions (BOL) before treatment and surgery. A Roche Modular analytical platform measured lipid panels, Apo B and Lp(a) levels.Results ANGPTL3 levels were higher in women with HGSOC (84 ng/mL, SD: 29 ng/mL, n = 31) than in women with BOL (67 ng/mL, SD: 31 ng/mL, n = 40; HGSOC vs. BOL P = 0.019). Associations between the lipid panel and ANGPTL3, and the inverse relationship between HDL-cholesterol and triglycerides, were present in women with BOL but not with HGSOC. PCSK9 and Apo CIII were not associated with HGSOC.Conclusions In this cohort of 71 women, ANGPTL3 levels were increased in HGSOC patients. The presence of HGSOC disrupted the classic inverse relationship between HDL and triglycerides, as well as the association between the lipid panel and ANGPTL3. These associations were only maintained in cancer-free women. Given the availability of Evinacumab, a therapeutic antibody against ANGPTL3, the current finding prompts an assessment of whether ANGPTL3 inhibition has therapeutic potential in HGSOC.


Asunto(s)
Carcinoma , Quistes Ováricos , Neoplasias Ováricas , Humanos , Femenino , Proproteína Convertasa 9 , Proteínas Similares a la Angiopoyetina/genética , Proteína 3 Similar a la Angiopoyetina , Neoplasias Ováricas/tratamiento farmacológico , Triglicéridos , Angiopoyetinas/genética
5.
Neurobiol Dis ; 172: 105833, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35905928

RESUMEN

Converging lines of evidence suggest that abnormal accumulation of the kinase Polo-like kinase 2 (PLK2) might play a role in the pathogenesis of Alzheimer's disease (AD), possibly through its role in regulating the amyloid ß (Aß) cascade. In the present study, we investigated the effect of inhibiting PLK2 kinase activity in in vitro and in vivo models of AD neuropathology. First, we confirmed that PLK2 overexpression modulated APP and Tau protein levels and phosphorylation in cell culture, in a kinase activity dependent manner. Furthermore, a transient treatment of triple transgenic mouse model of AD (3xTg-AD) with a potent and specific PLK2 pharmacological inhibitor (PLK2i #37) reduced some neuropathological aspects in a sex-dependent manner. In 3xTg-AD males, treatment with PLK2i #37 led to lower Tau burden, higher synaptic protein content, and prevented learning and memory deficits. In contrast, treated females showed an exacerbation of Tau pathology, associated with a reduction in amyloid plaque accumulation. Overall, our findings suggest that PLK2 inhibition alters key components of AD neuropathology in a sex-dependent manner and might display a therapeutic potential for the treatment for AD and related dementia.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Modelos Animales de Enfermedad , Femenino , Masculino , Ratones , Ratones Transgénicos , Placa Amiloide/patología , Proteínas tau/metabolismo
6.
BMC Cancer ; 22(1): 1049, 2022 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-36203122

RESUMEN

BACKGROUND / SYNOPSIS: Cholesterol and lipids play an important role in sustaining tumor growth and metastasis in a large variety of cancers. ANGPTL3 and PCSK9 modify circulating cholesterol levels, thus availability of lipids to peripheral cells. Little is known on the role, if any, of circulating lipid-related factors such as PCSK9, ANGPTL3 and lipoprotein (a) in cancers. OBJECTIVE/PURPOSE: To compare circulating levels of PCSK9, ANGPTL3, and Lp(a) in women with stage III breast cancer versus women with premalignant or benign breast lesions. METHODS: Twenty-three plasma samples from women diagnosed with a stage III breast cancer (ductal, lobular or mixed) were matched for age with twenty-three plasma samples from women bearing premalignant (stage 0, n = 9) or benign (n = 14) breast lesions. The lipid profile (Apo B, total cholesterol, HDL cholesterol and triglycerides levels) and Lp(a) were measured on a Roche Modular analytical platform, whereas LDL levels were calculated with the Friedewald formula. ANGPTL3 and PCSK9 plasma levels were quantitated by ELISA. All statistical analyses were performed using SAS software version 9.4. RESULTS: PCSK9 levels were significantly higher in women with stage III breast cancer compared to age-matched counterparts presenting a benign lesion (95.9 ± 27.1 ng/mL vs. 78.5 ± 19.3 ng/mL, p < 0.05, n = 14). Moreover, PCSK9 levels positively correlated with breast disease severity (benign, stage 0, stage III) (Rho = 0.34, p < 0.05, n = 46). In contrast, ANGPTL3 and Lp(a) plasma levels did not display any association with breast disease status and lipids did not correlate with disease severity. CONCLUSION: In this small cohort of 46 women, PCSK9 levels tended to increase with the severity of the breast disease. Given that PCSK9 plays an important role in maintaining cholesterolemia, and a potential role in tumor evasion, present results warrant further investigation into a possible association between PCSK9 levels and breast cancer severity in larger cohorts of women.


Asunto(s)
Neoplasias de la Mama , Proproteína Convertasa 9 , Proteína 3 Similar a la Angiopoyetina , Proteínas Similares a la Angiopoyetina , Apolipoproteínas B , Colesterol , HDL-Colesterol , Femenino , Humanos , Lipoproteína(a) , Triglicéridos
7.
Neurobiol Dis ; 161: 105542, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34737043

RESUMEN

BACKGROUND: Vitamin A (VitA), via its active metabolite retinoic acid (RA), is critical for the maintenance of memory function with advancing age. Although its role in Alzheimer's disease (AD) is not well understood, data suggest that impaired brain VitA signaling is associated with the accumulation of ß-amyloid peptides (Aß), and could thus contribute to the onset of AD. METHODS: We evaluated the protective action of a six-month-long dietary VitA-supplementation (20 IU/g), starting at 8 months of age, on the memory and the neuropathology of the 3xTg-AD mouse model of AD (n = 11-14/group; including 4-6 females and 7-8 males). We also measured protein levels of Retinoic Acid Receptor ß (RARß) and Retinoid X Receptor γ (RXRγ) in homogenates from the inferior parietal cortex of 60 participants of the Religious Orders study (ROS) divided in three groups: no cognitive impairment (NCI) (n = 20), mild cognitive impairment (MCI) (n = 20) and AD (n = 20). RESULTS: The VitA-enriched diet preserved spatial memory of 3xTg-AD mice in the Y maze. VitA-supplementation affected hippocampal RXR expression in an opposite way according to sex by tending to increase in males and decrease in females their mRNA expression. VitA-enriched diet also reduced the amount of hippocampal Aß40 and Aß42, as well as the phosphorylation of tau protein at sites Ser396/Ser404 (PHF-1) in males. VitA-supplementation had no effect on tau phosphorylation in females but worsened their hippocampal Aß load. However, the expression of Rxr-ß in the hippocampus was negatively correlated with the amount of both soluble and insoluble Aß in both males and females. Western immunoblotting in the human cortical samples of the ROS study did not reveal differences in RARß levels. However, it evidenced a switch from a 60-kDa-RXRγ to a 55-kDa-RXRγ in AD, correlating with ante mortem cognitive decline and the accumulation of neuritic plaques in the brain cortex. CONCLUSION: Our data suggest that (i) an altered expression of RXRs receptors is a contributor to ß-amyloid pathology in both humans and 3xTg-AD mice, (ii) a chronic exposure of 3xTg-AD mice to a VitA-enriched diet may be protective in males, but not in females.


Asunto(s)
Enfermedad de Alzheimer , Vitamina A , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Dieta , Modelos Animales de Enfermedad , Femenino , Hipocampo/metabolismo , Humanos , Masculino , Ratones , Ratones Transgénicos , Receptores X Retinoide/metabolismo , Proteínas tau/metabolismo
8.
Eur J Neurosci ; 54(9): 7092-7108, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34549475

RESUMEN

Olfactory dysfunction is observed in several neurological disorders including Mild Cognitive Impairment (MCI) and Alzheimer disease (AD). These deficits occur early and correlate with global cognitive performance, depression and degeneration of olfactory regions in the brain. Despite extensive human studies, there has been little characterization of the olfactory system in models of AD. In order to determine if olfactory structural and/or molecular phenotypes are observed in a model expressing a genetic risk factor for AD, we assessed the olfactory bulb (OB) in APOE4 transgenic mice. A significant decrease in OB weight was observed at 12 months of age in APOE4 mice concurrent with inflammation and decreased NeuN expression. In order to determine if a diet rich in omega-3s may alleviate the olfactory system phenotypes observed, we assessed WT and APOE4 mice on a docosahexaenoic acid (DHA) diet. APOE4 mice on a DHA diet did not present with atrophy of the OB, and the alterations in NeuN and IBA-1 expression were alleviated. Furthermore, alterations in caspase mRNA and protein expression in the APOE4 OB were not observed with a DHA diet. Similar to the human AD condition, OB atrophy is an early phenotype in the APOE4 mice and concurrent with inflammation. These data support a link between the structural olfactory brain region atrophy and the olfactory dysfunction observed in AD and suggest that inflammation and cell death pathways may contribute to the olfactory deficits observed. Furthermore, the results suggest that diets enriched in DHA may provide benefit to APOE4 allele carriers.


Asunto(s)
Enfermedad de Alzheimer , Apolipoproteína E4 , Ácidos Docosahexaenoicos/fisiología , Trastornos del Olfato/dietoterapia , Bulbo Olfatorio , Enfermedad de Alzheimer/complicaciones , Enfermedad de Alzheimer/genética , Animales , Apolipoproteína E4/genética , Atrofia , Dieta , Modelos Animales de Enfermedad , Ratones , Ratones Transgénicos , Trastornos del Olfato/etiología , Trastornos del Olfato/genética , Bulbo Olfatorio/crecimiento & desarrollo , Bulbo Olfatorio/metabolismo , Bulbo Olfatorio/patología
9.
Int J Mol Sci ; 22(7)2021 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-33805947

RESUMEN

The scope of evidence on the neuroprotective impact of natural products has been greatly extended in recent years. However, a key question that remains to be answered is whether natural products act directly on targets located in the central nervous system (CNS), or whether they act indirectly through other mechanisms in the periphery. While molecules utilized for brain diseases are typically bestowed with a capacity to cross the blood-brain barrier, it has been recently uncovered that peripheral metabolism impacts brain functions, including cognition. The gut-microbiota-brain axis is receiving increasing attention as another indirect pathway for orally administered compounds to act on the CNS. In this review, we will briefly explore these possibilities focusing on two classes of natural products: omega-3 polyunsaturated fatty acids (n-3 PUFAs) from marine sources and polyphenols from plants. The former will be used as an example of a natural product with relatively high brain bioavailability but with tightly regulated transport and metabolism, and the latter as an example of natural compounds with low brain bioavailability, yet with a growing amount of preclinical and clinical evidence of efficacy. In conclusion, it is proposed that bioavailability data should be sought early in the development of natural products to help identifying relevant mechanisms and potential impact on prevalent CNS disorders, such as Alzheimer's disease.


Asunto(s)
Productos Biológicos/farmacología , Barrera Hematoencefálica , Encéfalo/efectos de los fármacos , Cognición/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Animales , Disponibilidad Biológica , Productos Biológicos/farmacocinética , Transporte Biológico , Encéfalo/metabolismo , Sistema Nervioso Central/metabolismo , Ácidos Grasos Omega-3/farmacocinética , Ácidos Grasos Omega-3/farmacología , Microbioma Gastrointestinal , Humanos , Fármacos Neuroprotectores/farmacocinética , Polifenoles/farmacocinética , Polifenoles/farmacología
10.
J Neuroinflammation ; 16(1): 3, 2019 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-30611289

RESUMEN

BACKGROUND: Immunologic abnormalities have been described in peripheral blood and central nervous system of patients suffering from Alzheimer's disease (AD), yet their role in the pathogenesis still remains poorly defined. AIM AND METHODS: We used the triple transgenic mouse model (3xTg-AD) to reproduce Aß (amyloid plaques) and tau (neurofibrillary tangles) neuropathologies. We analyzed important features of the adaptive immune system in serum, primary (bone marrow) as well as secondary (spleen) lymphoid organs of 12-month-old 3xTg-AD mice using flow cytometry and ELISPOT. We further investigated serum cytokines of 9- and 13-month-old 3xTg-AD mice using multiplex ELISA. Results were compared to age-matched non-transgenic controls (NTg). RESULTS: In the bone marrow of 12-month-old 3xTg-AD mice, we detected decreased proportions of short-term reconstituting hematopoietic stem cells (0.58-fold, P = 0.0116), while lymphocyte, granulocyte, and monocyte populations remained unchanged. Our results also point to increased activation of both B and T lymphocytes. Indeed, we report elevated levels of plasma cells in bone marrow (1.3-fold, P = 0.0405) along with a 5.4-fold rise in serum IgG concentration (P < 0.0001) in 3xTg-AD animals. Furthermore, higher levels of interleukin (IL)-2 were detected in serum of 9- and 13-month-old 3xTg-AD mice (P = 0.0018). Along with increased concentrations of IL-17 (P = 0.0115) and granulocyte-macrophage colony-stimulating factor (P = 0.0085), these data support helper T lymphocyte activation with Th17 polarization. CONCLUSION: Collectively, these results suggest that the 3xTg-AD model mimics modifications of the adaptive immunity changes previously observed in human AD patients and underscore the activation of both valuable and harmful pathways of immunity in AD.


Asunto(s)
Inmunidad Adaptativa/fisiología , Enfermedad de Alzheimer/inmunología , Enfermedad de Alzheimer/patología , Citocinas/metabolismo , Linfocitos/patología , Inmunidad Adaptativa/genética , Enfermedad de Alzheimer/genética , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animales , Médula Ósea/patología , Polaridad Celular/genética , Granulocitos/patología , Humanos , Ratones , Ratones Transgénicos , Monocitos/patología , Mutación/genética , Ovillos Neurofibrilares , Presenilina-1/genética , Bazo/patología , Proteínas tau/genética
11.
Acta Neuropathol ; 137(5): 801-823, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30729296

RESUMEN

Several pieces of evidence suggest that blood-brain barrier (BBB) dysfunction is implicated in the pathophysiology of Alzheimer's disease (AD), exemplified by the frequent occurrence of cerebral amyloid angiopathy (CAA) and the defective clearance of Aß peptides. However, the specific role of brain microvascular cells in these anomalies remains elusive. In this study, we validated by Western, ELISA and immunofluorescence analyses a procedure to generate microvasculature-enriched fractions from frozen samples of human cerebral cortex. We then investigated Aß and proteins involved in its clearance or production in microvessel extracts generated from the parietal cortex of 60 volunteers in the Religious Orders Study. Volunteers were categorized as AD (n = 38) or controls (n = 22) based on the ABC scoring method presented in the revised guidelines for the neuropathological diagnosis of AD. Higher ELISA-determined concentrations of vascular Aß40 and Aß42 were found in persons with a neuropathological diagnosis of AD, in apoE4 carriers and in participants with advanced parenchymal CAA, compared to respective age-matched controls. Vascular levels of two proteins involved in Aß clearance, ABCB1 and neprilysin, were lower in persons with AD and positively correlated with cognitive function, while being inversely correlated to vascular Aß40. In contrast, BACE1, a protein necessary for Aß production, was increased in individuals with AD and in apoE4 carriers, negatively correlated to cognitive function and positively correlated to Aß40 in microvessel extracts. The present report indicates that concentrating microvessels from frozen human brain samples facilitates the quantitative biochemical analysis of cerebrovascular dysfunction in CNS disorders. Data generated overall show that microvessels extracted from individuals with parenchymal CAA-AD contained more Aß and BACE1 and less ABCB1 and neprilysin, evidencing a pattern of dysfunction in brain microvascular cells contributing to CAA and AD pathology and symptoms.


Asunto(s)
Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Angiopatía Amiloide Cerebral/patología , Microvasos/patología , Lóbulo Parietal/patología , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Anciano de 80 o más Años , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Apolipoproteínas E/genética , Angiopatía Amiloide Cerebral/genética , Angiopatía Amiloide Cerebral/metabolismo , Cognición , Femenino , Humanos , Estudios Longitudinales , Masculino , Microvasos/metabolismo , Neprilisina/metabolismo , Lóbulo Parietal/irrigación sanguínea , Lóbulo Parietal/metabolismo
12.
Mol Pharm ; 16(2): 583-594, 2019 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-30609376

RESUMEN

The transferrin receptor (TfR) is highly expressed by brain capillary endothelial cells (BCECs) forming the blood-brain barrier (BBB) and is therefore considered as a potential target for brain drug delivery. Monoclonal antibodies binding to the TfR, such as clone Ri7, have been shown to internalize into BCECs in vivo. However, since Alzheimer's disease (AD) is accompanied by a BBB dysfunction, it raises concerns about whether TfR-mediated transport becomes inefficient during the progression of the disease. Measurements of TfR levels using Western blot analysis in whole homogenates from human post-mortem parietal cortex and hippocampus did not reveal any significant difference between individuals with or without a neuropathological diagnosis of AD (respectively, n = 19 and 22 for the parietal cortex and n = 12 and 14 for hippocampus). Similarly, TfR concentrations in isolated human brain microvessels from parietal cortex were similar between controls and AD cases. TfR levels in isolated murine brain microvessels were not significantly different between groups of 12- and 18-month-old NonTg and 3xTg-AD mice, the latter modeling Aß and τ neuropathologies. In situ brain perfusion assays were then conducted to measure the brain uptake and internalization of fluorolabeled Ri7 in BCECs upon binding. Consistently, TfR-mediated uptake in BCECs was similar between 3xTg-AD mice and nontransgenic controls (∼0.3 µL·g-1·s-1) at 12, 18, and 22 months of age. Fluorescence microscopy analysis following intravenous administration of fluorolabeled Ri7 highlighted that the signal from the antibody was widely distributed throughout the cerebral vasculature but not in neurons or astrocytes. Overall, our data suggest that both TfR protein levels and TfR-dependent internalization mechanisms are preserved in the presence of Aß and τ neuropathologies, supporting the potential of TfR as a vector target for drug delivery into BCECs in AD.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Barrera Hematoencefálica/metabolismo , Receptores de Transferrina/metabolismo , Animales , Anticuerpos Monoclonales/metabolismo , Western Blotting , Ensayo de Inmunoadsorción Enzimática , Femenino , Técnica del Anticuerpo Fluorescente , Hipocampo/metabolismo , Masculino , Ratones , Microscopía Fluorescente , Neuropatología , Lóbulo Parietal/metabolismo
13.
J Neuroinflammation ; 15(1): 312, 2018 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-30413172

RESUMEN

BACKGROUND: TDP-43 has been identified as a disease-associated protein in several chronic neurodegenerative disorders and increasing evidence suggests its potentially pathogenic role following brain injuries. Normally expressed in nucleus, under pathological conditions TDP-43 forms cytoplasmic ubiquitinated inclusions in which it is abnormally phosphorylated and cleaved to generate a 35 and a 25 kDa C-terminal fragments. In the present study, we investigated age-related expression patterns of TDP-43 in neurons and glia and its role as modulator of inflammation following ischemic injury. METHODS: Wild-type and TDP-43 transgenic mice of different age groups were subjected to transient middle cerebral artery occlusion. The role of TDP-43 in modulation of inflammation was assessed using immunofluorescence, Western blot analysis, and in vivo bioluminescence imaging. Finally, post-mortem stroke human brain sections were analyzed for TDP-43 protein by immunohistochemistry. RESULTS: We report here an age-related increase and formation of ubiquitinated TDP-43 cytoplasmic inclusions after stroke. The observed deregulation in TDP-43 expression patterns was associated with an increase in microglial activation and innate immune signaling as revealed by in vivo bioluminescence imaging and immunofluorescence analysis. The presence of ubiquitinated TDP-43 aggregates and its cleaved TDP-35 and TDP-25 fragments was markedly increased in older, 12-month-old mice leading to larger infarctions and a significant increase in in neuronal death. Importantly, unlike the hallmark neuropathological features associated with chronic neurodegenerative disorders, the TDP-43-positive cytoplasmic inclusions detected after stroke were not phosphorylated. Next, we showed that an increase and/or overexpression of the cytoplasmic TDP-43 drives the pathogenic NF-κB response and further increases levels of pro-inflammatory markers and ischemic injury after stroke in age-dependent manner. Finally, analyses of the post-mortem stroke brain tissues revealed the presence of the cytoplasmic TDP-43 immunoreactive structures after human stroke. CONCLUSION: Together, our findings suggest that the level of cytoplasmic TDP-43 increases with aging and may act as an age-related mediator of inflammation and neuronal injury after stroke. Thus, targeting cytoplasmic TDP-43 may have a therapeutic potential after stroke.


Asunto(s)
Envejecimiento , Regulación de la Expresión Génica/fisiología , Inflamación/etiología , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/patología , Receptor Toll-Like 2/metabolismo , Anciano , Anciano de 80 o más Años , Animales , Infarto Encefálico/etiología , Citocinas/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Persona de Mediana Edad , Mutación/genética , Fosfopiruvato Hidratasa/metabolismo , Agregación Patológica de Proteínas/etiología , Agregación Patológica de Proteínas/genética , Receptor Toll-Like 2/genética
14.
Synapse ; 72(4)2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29341269

RESUMEN

No model fully recapitulates the neuropathology of Alzheimer's disease (AD). Although the triple-transgenic mouse model of AD (3xTg-AD) expresses Aß plaques and tau-laden neurofibrillary tangles, as well as synaptic and behavioral deficits, it does not display frank neuronal loss. Because old age is the most important risk factor in AD, senescence-related interactions might be lacking to truly establish an AD-like environment. To investigate this hypothesis, we bred the 3xTg-AD mouse with the senescence-accelerated mouse prone 8 (SAMP8), a model of accelerated aging. We generated four groups of heterozygous mice with either the SAMP8 or SAMR1 (senescence-resistant-1) genotype, along with either the 3xTg-AD or non-transgenic (NonTg) genotype. Despite no differences among groups in total latency to escape the Barnes maze, a greater number of errors were noticed before entering the target hole in 19-month-old P8/3xTg-AD mice at day 5, compared to other groups. Postmortem analyses revealed increased cortical levels of phospho-tau (Thr231) in female P8/3xTg-AD mice (+277% vs. R1/3xTg-AD mice), without other tau-related changes. Female P8/3xTg-AD mice exhibited higher cortical soluble Aß40 and Aß42 concentrations (Aß40, +85%; Aß42, +35% vs. R1/3xTg-AD), whereas insoluble forms remained unchanged. Higher Aß42 load coincided with increased astroglial activation in female P8/3xTg-AD mice, as measured with glial fibrillary acidic protein (GFAP) (+57% vs. R1/3xTg-AD mice). To probe neuronal degeneration, concentrations of neuronal nuclei (NeuN) were measured, but no differences were detected between groups. Altogether, the SAMP8 genotype had deleterious effects on spatial memory and exerted female-specific aggravation of AD neuropathology without overt neurodegeneration in 3xTg-AD mice.


Asunto(s)
Enfermedad de Alzheimer , Modelos Animales de Enfermedad , Ratones Transgénicos , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/psicología , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Ansiedad/metabolismo , Ansiedad/patología , Apolipoproteínas E/metabolismo , Peso Corporal/fisiología , Corteza Cerebral/metabolismo , Corteza Cerebral/patología , Femenino , Proteína Ácida Fibrilar de la Glía/metabolismo , Gliosis/metabolismo , Gliosis/patología , Humanos , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Actividad Motora/fisiología , Fragmentos de Péptidos/metabolismo , Memoria Espacial/fisiología , Especificidad de la Especie , Proteínas tau/genética , Proteínas tau/metabolismo
15.
Bioorg Med Chem Lett ; 28(22): 3554-3559, 2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-30297283

RESUMEN

17ß-Hydroxysteroid dehydrogenase type 10 (17ß-HSD10) is a mitochondrial enzyme known for its potential role in Alzheimer's Disease (AD). 17ß-HSD10, by its oxidative activity, could decrease the concentration of two important neurosteroids, allopregnanolone (ALLOP) and 17ß-estradiol (E2), respectively preventing their neurogenesis and neuroprotective effects. Since the inhibition of 17ß-HSD10 could lead to a new treatment for AD, we developed two biological assays using labeled ALLOP or E2 as substrates to measure the inhibitory activity of compounds against pure 17ß-HSD10 protein. After the optimization of different parameters (time, concentration of enzyme, substrate and cofactor), analogs of the first reported steroidal inhibitor of 17ß-HSD10 in intact cells were screened to determine their inhibitory potency for the ALLOP or the E2 oxidation. One compound, androstane derivative 5, possesses the best dual inhibition against both transformations (ALLOP, IC50 = 235 µM and E2, IC50 = 610 µM). Some compounds are dual inhibitors to a lesser extent, and others seem selective for one of the transformations in particular. By developing two reliable assays and by identifying a first generation of steroidal inhibitors of pure 17ß-HSD10, this preliminary study opens the door to new and more potent inhibitors.


Asunto(s)
17-Hidroxiesteroide Deshidrogenasas/metabolismo , Inhibidores Enzimáticos/química , Estradiol/metabolismo , Pregnanolona/metabolismo , Esteroides/química , 17-Hidroxiesteroide Deshidrogenasas/antagonistas & inhibidores , 5-alfa-Dihidroprogesterona/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/patología , Inhibidores Enzimáticos/metabolismo , Inhibidores Enzimáticos/uso terapéutico , Estrona/metabolismo , Células HEK293 , Humanos , Esteroides/metabolismo , Esteroides/uso terapéutico , Relación Estructura-Actividad
16.
Neurobiol Dis ; 98: 1-8, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27793638

RESUMEN

Over the last few decades, there has been a significant increase in epidemiological studies suggesting that type 2 diabetes (T2DM) is linked to a higher risk of Alzheimer's disease (AD). However, how T2DM affects AD pathology, such as tau hyperphosphorylation, is not well understood. In this study, we investigated the impact of T2DM on tau phosphorylation in ob/ob mice, a spontaneous genetic model of T2DM. Tau phosphorylation at the AT8 epitope was slightly elevated in 4-week-old ob/ob mice while 26-week-old ob/ob mice exhibited tau hyperphosphorylation at multiple tau phospho-epitopes (Tau1, CP13, AT8, AT180, PHF1). We then examined the mechanism of tau hyperphosphorylation and demonstrated that it is mostly due to hypothermia, as ob/ob mice were hypothermic and normothermia restored tau phosphorylation to control levels. As caffeine has been shown to be beneficial for diabetes, obesity and tau phosphorylation, we, therefore, used it as therapeutic treatment. Unexpectedly, chronic caffeine intake exacerbated tau hyperphosphorylation by promoting deeper hypothermia. Our data indicate that tau hyperphosphorylation is predominately due to hypothermia consequent to impaired thermoregulation in ob/ob mice. This study establishes a novel link between diabetes and AD, and reinforces the importance of recording body temperature to better assess the relationship between diabetes and AD.


Asunto(s)
Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Hipocampo/metabolismo , Hipotermia/metabolismo , Proteínas tau/metabolismo , Enfermedad de Alzheimer/metabolismo , Animales , Temperatura Corporal/efectos de los fármacos , Temperatura Corporal/fisiología , Regulación de la Temperatura Corporal/efectos de los fármacos , Regulación de la Temperatura Corporal/fisiología , Cafeína/toxicidad , Estimulantes del Sistema Nervioso Central/toxicidad , Hipocampo/efectos de los fármacos , Leptina/administración & dosificación , Leptina/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Mutantes , Fosforilación/efectos de los fármacos , Fosforilación/fisiología
17.
Hum Mol Genet ; 24(23): 6721-35, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26362250

RESUMEN

Alzheimer's disease (AD) and related tauopathies comprise a large group of neurodegenerative diseases associated with the pathological aggregation of tau protein. While much effort has focused on understanding the function of tau, little is known about the endogenous mechanisms regulating tau metabolism in vivo and how these contribute to disease. Previously, we have shown that the microRNA (miRNA) cluster miR-132/212 is downregulated in tauopathies such as AD. Here, we report that miR-132/212 deficiency in mice leads to increased tau expression, phosphorylation and aggregation. Using reporter assays and cell-based studies, we demonstrate that miR-132 directly targets tau mRNA to regulate its expression. We identified GSK-3ß and PP2B as effectors of abnormal tau phosphorylation in vivo. Deletion of miR-132/212 induced tau aggregation in mice expressing endogenous or human mutant tau, an effect associated with autophagy dysfunction. Conversely, treatment of AD mice with miR-132 mimics restored in part memory function and tau metabolism. Finally, miR-132 and miR-212 levels correlated with insoluble tau and cognitive impairment in humans. These findings support a role for miR-132/212 in the regulation of tau pathology in mice and humans and provide new alternatives for therapeutic development.


Asunto(s)
MicroARNs/genética , Agregación Patológica de Proteínas/genética , Tauopatías/metabolismo , Proteínas tau/metabolismo , Animales , Trastornos del Conocimiento/genética , Trastornos del Conocimiento/metabolismo , Trastornos del Conocimiento/fisiopatología , Modelos Animales de Enfermedad , Regulación hacia Abajo , Regulación de la Expresión Génica , Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Humanos , Ratones , Fosforilación , Tauopatías/fisiopatología , Proteínas tau/genética
18.
Acta Neuropathol ; 133(1): 101-119, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27752775

RESUMEN

Soluble oligomers of amyloid-ß (Aß) impair synaptic plasticity, perturb neuronal energy homeostasis, and are implicated in Alzheimer's disease (AD) pathogenesis. Therefore, significant efforts in AD drug discovery research aim to prevent the formation of Aß oligomers or block their neurotoxicity. The eukaryotic elongation factor-2 kinase (eEF2K) plays a critical role in synaptic plasticity, and couples neurotransmission to local dendritic mRNA translation. Recent evidence indicates that Aß oligomers activate neuronal eEF2K, suggesting a potential link to Aß induced synaptic dysfunction. However, a detailed understanding of the role of eEF2K in AD pathogenesis, and therapeutic potential of eEF2K inhibition in AD, remain to be determined. Here, we show that eEF2K activity is increased in postmortem AD patient cortex and hippocampus, and in the hippocampus of aged transgenic AD mice. Furthermore, eEF2K inhibition using pharmacological or genetic approaches prevented the toxic effects of Aß42 oligomers on neuronal viability and dendrite formation in vitro. We also report that eEF2K inhibition promotes the nuclear factor erythroid 2-related factor (NRF2) antioxidant response in neuronal cells, which was crucial for the beneficial effects of eEF2K inhibition in neurons exposed to Aß42 oligomers. Accordingly, NRF2 knockdown or overexpression of the NRF2 inhibitor, Kelch-Like ECH-Associated Protein-1 (Keap1), significantly attenuated the neuroprotection associated with eEF2K inhibition. Finally, genetic deletion of the eEF2K ortholog efk-1 reduced oxidative stress, and improved chemotaxis and serotonin sensitivity in C. elegans expressing human Aß42 in neurons. Taken together, these findings highlight the potential utility of eEF2K inhibition to reduce Aß-mediated oxidative stress in AD.


Asunto(s)
Enfermedad de Alzheimer/terapia , Péptidos beta-Amiloides/metabolismo , Quinasa del Factor 2 de Elongación/deficiencia , Fragmentos de Péptidos/metabolismo , Enfermedad de Alzheimer/enzimología , Péptidos beta-Amiloides/genética , Péptidos beta-Amiloides/toxicidad , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Células Cultivadas , Quinasa del Factor 2 de Elongación/antagonistas & inhibidores , Quinasa del Factor 2 de Elongación/genética , Quinasa del Factor 2 de Elongación/metabolismo , Inhibidores Enzimáticos/farmacología , Femenino , Lóbulo Frontal/efectos de los fármacos , Lóbulo Frontal/enzimología , Hipocampo/efectos de los fármacos , Hipocampo/enzimología , Humanos , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Masculino , Factor 2 Relacionado con NF-E2/metabolismo , Neuronas/efectos de los fármacos , Neuronas/enzimología , Neuronas/patología , Fármacos Neuroprotectores/farmacología , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/fisiología , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/toxicidad , Especies Reactivas de Oxígeno
19.
Neurobiol Dis ; 88: 55-65, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26777665

RESUMEN

Accumulating evidence from epidemiological studies suggest that type 2 diabetes is linked to an increased risk of Alzheimer's disease (AD). However, the consequences of type 2 diabetes on AD pathologies, such as tau hyperphosphorylation, are not well understood. Here, we evaluated the impact of type 2 diabetes on tau phosphorylation in db/db diabetic mice aged 4 and 26weeks. We found increased tau phosphorylation at the CP13 epitope correlating with a deregulation of c-Jun. N-terminal kinase (JNK) and Protein Phosphatase 2A (PP2A) in 4-week-old db/db mice. 26-week-old db/db mice displayed tau hyperphosphorylation at multiple epitopes (CP13, AT8, PHF-1), but no obvious change in kinases or phosphatases, no cleavage of tau, and no deregulation of central insulin signaling pathways. In contrast to younger animals, 26-week-old db/db mice were hypothermic and restoration of normothermia rescued phosphorylation at most epitopes. Our results suggest that, at early stages of type 2 diabetes, changes in tau phosphorylation may be due to deregulation of JNK and PP2A, while at later stages hyperphosphorylation is mostly a consequence of hypothermia. These results provide a novel link between diabetes and tau pathology, and underlie the importance of recording body temperature to better understand the relationship between diabetes and AD.


Asunto(s)
Envejecimiento/fisiología , Diabetes Mellitus Tipo 2/terapia , Hipotermia Inducida , Proteínas tau/metabolismo , Análisis de Varianza , Animales , Glucemia , Peso Corporal/genética , Peso Corporal/fisiología , Encéfalo/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patología , Modelos Animales de Enfermedad , Regulación de la Expresión Génica/genética , Índice Glucémico , Resistencia a la Insulina/genética , Leptina/deficiencia , Leptina/genética , MAP Quinasa Quinasa 4/metabolismo , Masculino , Ratones , Ratones Mutantes , Fosforilación/genética , Transducción de Señal/genética
20.
Ann Neurol ; 78(2): 160-77, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25866151

RESUMEN

OBJECTIVE: Although the underlying cause of Huntington's disease (HD) is well established, the actual pathophysiological processes involved remain to be fully elucidated. In other proteinopathies such as Alzheimer's and Parkinson's diseases, there is evidence for impairments of the cerebral vasculature as well as the blood-brain barrier (BBB), which have been suggested to contribute to their pathophysiology. We investigated whether similar changes are also present in HD. METHODS: We used 3- and 7-Tesla magnetic resonance imaging as well as postmortem tissue analyses to assess blood vessel impairments in HD patients. Our findings were further investigated in the R6/2 mouse model using in situ cerebral perfusion, histological analysis, Western blotting, as well as transmission and scanning electron microscopy. RESULTS: We found mutant huntingtin protein (mHtt) aggregates to be present in all major components of the neurovascular unit of both R6/2 mice and HD patients. This was accompanied by an increase in blood vessel density, a reduction in blood vessel diameter, as well as BBB leakage in the striatum of R6/2 mice, which correlated with a reduced expression of tight junction-associated proteins and increased numbers of transcytotic vesicles, which occasionally contained mHtt aggregates. We confirmed the existence of similar vascular and BBB changes in HD patients. INTERPRETATION: Taken together, our results provide evidence for alterations in the cerebral vasculature in HD leading to BBB leakage, both in the R6/2 mouse model and in HD patients, a phenomenon that may, in turn, have important pathophysiological implications.


Asunto(s)
Vasos Sanguíneos/patología , Barrera Hematoencefálica/patología , Enfermedad de Huntington/patología , Neostriado/irrigación sanguínea , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/metabolismo , Adulto , Anciano , Animales , Vasos Sanguíneos/metabolismo , Barrera Hematoencefálica/metabolismo , Encéfalo/irrigación sanguínea , Encéfalo/metabolismo , Encéfalo/patología , Circulación Cerebrovascular/genética , Modelos Animales de Enfermedad , Femenino , Humanos , Proteína Huntingtina , Enfermedad de Huntington/genética , Enfermedad de Huntington/metabolismo , Angiografía por Resonancia Magnética , Imagen por Resonancia Magnética , Masculino , Ratones , Ratones Transgénicos , Microscopía Inmunoelectrónica , Persona de Mediana Edad , Neostriado/metabolismo , Neostriado/patología , Proteínas del Tejido Nervioso/genética , Proteínas Nucleares/genética , Tamaño de los Órganos , Imagen de Perfusión , Proteínas de Uniones Estrechas/metabolismo , Transcitosis/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA