Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Mol Psychiatry ; 25(1): 22-36, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31735910

RESUMEN

The evolution of human diets led to preferences toward polyunsaturated fatty acid (PUFA) content with 'Western' diets enriched in ω-6 PUFAs. Mounting evidence points to ω-6 PUFA excess limiting metabolic and cognitive processes that define longevity in humans. When chosen during pregnancy, ω-6 PUFA-enriched 'Western' diets can reprogram maternal bodily metabolism with maternal nutrient supply precipitating the body-wide imprinting of molecular and cellular adaptations at the level of long-range intercellular signaling networks in the unborn fetus. Even though unfavorable neurological outcomes are amongst the most common complications of intrauterine ω-6 PUFA excess, cellular underpinnings of life-long modifications to brain architecture remain unknown. Here, we show that nutritional ω-6 PUFA-derived endocannabinoids desensitize CB1 cannabinoid receptors, thus inducing epigenetic repression of transcriptional regulatory networks controlling neuronal differentiation. We found that cortical neurons lose their positional identity and axonal selectivity when mouse fetuses are exposed to excess ω-6 PUFAs in utero. Conversion of ω-6 PUFAs into endocannabinoids disrupted the temporal precision of signaling at neuronal CB1 cannabinoid receptors, chiefly deregulating Stat3-dependent transcriptional cascades otherwise required to execute neuronal differentiation programs. Global proteomics identified the immunoglobulin family of cell adhesion molecules (IgCAMs) as direct substrates, with DNA methylation and chromatin accessibility profiling uncovering epigenetic reprogramming at >1400 sites in neurons after prolonged cannabinoid exposure. We found anxiety and depression-like behavioral traits to manifest in adult offspring, which is consistent with genetic models of reduced IgCAM expression, to suggest causality for cortical wiring defects. Overall, our data uncover a regulatory mechanism whose disruption by maternal food choices could limit an offspring's brain function for life.


Asunto(s)
Encéfalo/efectos de los fármacos , Dieta Occidental/efectos adversos , Epigénesis Genética/efectos de los fármacos , Animales , Ansiedad , Encéfalo/metabolismo , Metilación de ADN/efectos de los fármacos , Depresión , Dieta , Suplementos Dietéticos , Endocannabinoides/metabolismo , Epigénesis Genética/genética , Epigenómica/métodos , Ácidos Grasos Omega-3/metabolismo , Ácidos Grasos Omega-6/metabolismo , Ácidos Grasos Insaturados/metabolismo , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas/metabolismo , Embarazo , Receptor Cannabinoide CB1/efectos de los fármacos
2.
EMBO J ; 33(7): 668-85, 2014 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-24469251

RESUMEN

Children exposed in utero to cannabis present permanent neurobehavioral and cognitive impairments. Psychoactive constituents from Cannabis spp., particularly Δ(9)-tetrahydrocannabinol (THC), bind to cannabinoid receptors in the fetal brain. However, it is unknown whether THC can trigger a cannabinoid receptor-driven molecular cascade to disrupt neuronal specification. Here, we show that repeated THC exposure disrupts endocannabinoid signaling, particularly the temporal dynamics of CB1 cannabinoid receptor, to rewire the fetal cortical circuitry. By interrogating the THC-sensitive neuronal proteome we identify Superior Cervical Ganglion 10 (SCG10)/stathmin-2, a microtubule-binding protein in axons, as a substrate of altered neuronal connectivity. We find SCG10 mRNA and protein reduced in the hippocampus of midgestational human cannabis-exposed fetuses, defining SCG10 as the first cannabis-driven molecular effector in the developing cerebrum. CB1 cannabinoid receptor activation recruits c-Jun N-terminal kinases to phosphorylate SCG10, promoting its rapid degradation in situ in motile axons and microtubule stabilization. Thus, THC enables ectopic formation of filopodia and alters axon morphology. These data highlight the maintenance of cytoskeletal dynamics as a molecular target for cannabis, whose imbalance can limit the computational power of neuronal circuitries in affected offspring.


Asunto(s)
Corteza Cerebral/efectos de los fármacos , Dronabinol/farmacología , Hipocampo/efectos de los fármacos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Psicotrópicos/farmacología , Receptor Cannabinoide CB1/efectos de los fármacos , Animales , Axones/efectos de los fármacos , Proteínas de Unión al Calcio , Diferenciación Celular , Corteza Cerebral/citología , Corteza Cerebral/embriología , Femenino , Feto/anomalías , Feto/efectos de los fármacos , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Hipocampo/citología , Hipocampo/embriología , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Masculino , Exposición Materna/efectos adversos , Ratones , Ratones Endogámicos C57BL , Fosforilación , Embarazo , Proteómica , ARN Mensajero/genética , Receptor Cannabinoide CB1/genética , Receptor Cannabinoide CB1/metabolismo , Estatmina , Factores de Tiempo
3.
Cereb Cortex ; 27(4): 2453-2468, 2017 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-27102657

RESUMEN

Although extensively studied postnatally, the functional differentiation of cholecystokinin (CCK)-containing interneurons en route towards the cerebral cortex during fetal development is incompletely understood. Here, we used CCKBAC/DsRed mice encoding a CCK promoter-driven red fluorescent protein to analyze the temporal dynamics of DsRed expression, neuronal identity, and positioning through high-resolution developmental neuroanatomy. Additionally, we developed a dual reporter mouse line (CCKBAC/DsRed::GAD67gfp/+) to differentiate CCK-containing interneurons from DsRed+ principal cells during prenatal development. We show that DsRed is upregulated in interneurons once they exit their proliferative niche in the ganglionic eminence and remains stably expressed throughout their long-distance migration towards the cerebrum, particularly in the hippocampus. DsRed+ interneurons, including a cohort coexpressing calretinin, accumulated at the palliosubpallial boundary by embryonic day 12.5. Pioneer DsRed+ interneurons already reached deep hippocampal layers by embryonic day 14.5 and were morphologically differentiated by birth. Furthermore, we probed migrating interneurons entering and traversing the cortical plate, as well as stationary cells in the hippocampus by patch-clamp electrophysiology to show the first signs of Na+ and K+ channel activity by embryonic day 12.5 and reliable adult-like excitability by embryonic day 18.5. Cumulatively, this study defines key positional, molecular, and biophysical properties of CCK+ interneurons in the prenatal brain.


Asunto(s)
Diferenciación Celular/fisiología , Corteza Cerebral/citología , Colecistoquinina/metabolismo , Interneuronas/citología , Neurogénesis/fisiología , Animales , Movimiento Celular , Corteza Cerebral/embriología , Corteza Cerebral/metabolismo , Inmunohistoquímica , Hibridación in Situ , Interneuronas/metabolismo , Ratones , Ratones Transgénicos , Microscopía Confocal , Técnicas de Placa-Clamp
4.
Proc Natl Acad Sci U S A ; 112(45): E6185-94, 2015 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-26494286

RESUMEN

Endocannabinoids are implicated in the control of glucose utilization and energy homeostasis by orchestrating pancreatic hormone release. Moreover, in some cell niches, endocannabinoids regulate cell proliferation, fate determination, and migration. Nevertheless, endocannabinoid contributions to the development of the endocrine pancreas remain unknown. Here, we show that α cells produce the endocannabinoid 2-arachidonoylglycerol (2-AG) in mouse fetuses and human pancreatic islets, which primes the recruitment of ß cells by CB1 cannabinoid receptor (CB1R) engagement. Using subtractive pharmacology, we extend these findings to anandamide, a promiscuous endocannabinoid/endovanilloid ligand, which impacts both the determination of islet size by cell proliferation and α/ß cell sorting by differential activation of transient receptor potential cation channel subfamily V member 1 (TRPV1) and CB1Rs. Accordingly, genetic disruption of TRPV1 channels increases islet size whereas CB1R knockout augments cellular heterogeneity and favors insulin over glucagon release. Dietary enrichment in ω-3 fatty acids during pregnancy and lactation in mice, which permanently reduces endocannabinoid levels in the offspring, phenocopies CB1R(-/-) islet microstructure and improves coordinated hormone secretion. Overall, our data mechanistically link endocannabinoids to cell proliferation and sorting during pancreatic islet formation, as well as to life-long programming of hormonal determinants of glucose homeostasis.


Asunto(s)
Endocannabinoides/metabolismo , Islotes Pancreáticos/embriología , Morfogénesis/fisiología , Receptor Cannabinoide CB1/metabolismo , Canales Catiónicos TRPV/metabolismo , Análisis de Varianza , Animales , Ácidos Grasos Omega-3/administración & dosificación , Femenino , Feto/metabolismo , Prueba de Tolerancia a la Glucosa , Procesamiento de Imagen Asistido por Computador , Islotes Pancreáticos/anatomía & histología , Ratones , Ratones Endogámicos C57BL , Microscopía Confocal , Embarazo
5.
EMBO J ; 32(12): 1730-44, 2013 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-23685357

RESUMEN

Actin-based remodelling underlies spine structural changes occurring during synaptic plasticity, the process that constantly reshapes the circuitry of the adult brain in response to external stimuli, leading to learning and memory formation. A positive correlation exists between spine shape and synaptic strength and, consistently, abnormalities in spine number and morphology have been described in a number of neurological disorders. In the present study, we demonstrate that the actin-regulating protein, Eps8, is recruited to the spine head during chemically induced long-term potentiation in culture and that inhibition of its actin-capping activity impairs spine enlargement and plasticity. Accordingly, mice lacking Eps8 display immature spines, which are unable to undergo potentiation, and are impaired in cognitive functions. Additionally, we found that reduction in the levels of Eps8 occurs in brains of patients affected by autism compared to controls. Our data reveal the key role of Eps8 actin-capping activity in spine morphogenesis and plasticity and indicate that reductions in actin-capping proteins may characterize forms of intellectual disabilities associated with spine defects.


Asunto(s)
Actinas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Encéfalo/metabolismo , Espinas Dendríticas/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Sinapsis/metabolismo , Actinas/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Trastorno Autístico/genética , Trastorno Autístico/metabolismo , Cognición/fisiología , Espinas Dendríticas/genética , Humanos , Potenciación a Largo Plazo/fisiología , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Sinapsis/genética
6.
Proc Natl Acad Sci U S A ; 111(24): E2472-81, 2014 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-24927567

RESUMEN

Little is known of the involvement of endocannabinoids and cannabinoid receptors in skeletal muscle cell differentiation. We report that, due to changes in the expression of genes involved in its metabolism, the levels of the endocannabinoid 2-arachidonoylglycerol (2-AG) are decreased both during myotube formation in vitro from murine C2C12 myoblasts and during mouse muscle growth in vivo. The endocannabinoid, as well as the CB1 agonist arachidonoyl-2-chloroethylamide, prevent myotube formation in a manner antagonized by CB1 knockdown and by CB1 antagonists, which, per se, instead stimulate differentiation. Importantly, 2-AG also inhibits differentiation of primary human satellite cells. Muscle fascicles from CB1 knockout embryos contain more muscle fibers, and postnatal mice show muscle fibers of an increased diameter relative to wild-type littermates. Inhibition of Kv7.4 channel activity, which plays a permissive role in myogenesis and depends on phosphatidylinositol 4,5-bisphosphate (PIP2), underlies the effects of 2-AG. We find that CB1 stimulation reduces both total and Kv7.4-bound PIP2 levels in C2C12 cells and inhibits Kv7.4 currents in transfected CHO cells. We suggest that 2-AG is an endogenous repressor of myoblast differentiation via CB1-mediated inhibition of Kv7.4 channels.


Asunto(s)
Ácidos Araquidónicos/química , Endocannabinoides/química , Glicéridos/química , Canales de Potasio KCNQ/metabolismo , Mioblastos Esqueléticos/citología , Receptor Cannabinoide CB1/metabolismo , Animales , Células CHO , Diferenciación Celular , Proliferación Celular , Cricetinae , Cricetulus , Silenciador del Gen , Humanos , Fosfatos de Inositol/metabolismo , Ratones , Desarrollo de Músculos/genética , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/citología , Músculo Esquelético/metabolismo , Receptor Cannabinoide CB2/metabolismo , Transducción de Señal , Elastómeros de Silicona/química , Transfección
7.
Proc Natl Acad Sci U S A ; 110(5): 1935-40, 2013 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-23319656

RESUMEN

Endocannabinoid, particularly 2-arachidonoyl glycerol (2-AG), signaling has recently emerged as a molecular determinant of neuronal migration and synapse formation during cortical development. However, the cell type specificity and molecular regulation of spatially and temporally confined morphogenic 2-AG signals remain unexplored. Here, we demonstrate that genetic and pharmacological manipulation of CB(1) cannabinoid receptors permanently alters cholinergic projection neuron identity and hippocampal innervation. We show that nerve growth factor (NGF), implicated in the morphogenesis and survival of cholinergic projection neurons, dose-dependently and coordinately regulates the molecular machinery for 2-AG signaling via tropomyosine kinase A receptors in vitro. In doing so, NGF limits the sorting of monoacylglycerol lipase (MGL), rate limiting 2-AG bioavailability, to proximal neurites, allowing cell-autonomous 2-AG signaling at CB(1) cannabinoid receptors to persist at atypical locations to induce superfluous neurite extension. We find that NGF controls MGL degradation in vitro and in vivo and identify the E3 ubiquitin ligase activity of breast cancer type 1 susceptibility protein (BRCA1) as a candidate facilitating MGL's elimination from motile neurite segments, including growth cones. BRCA1 inactivation by cisplatin or genetically can rescue and reposition MGL, arresting NGF-induced growth responses. These data indicate that NGF can orchestrate endocannabinoid signaling to promote cholinergic differentiation and implicate BRCA1 in determining neuronal morphology.


Asunto(s)
Endocannabinoides/metabolismo , Monoacilglicerol Lipasas/metabolismo , Factor de Crecimiento Nervioso/farmacología , Neuronas/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Animales , Ácidos Araquidónicos/metabolismo , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Línea Celular Tumoral , Células Cultivadas , Femenino , Perfilación de la Expresión Génica , Glicéridos/metabolismo , Hipocampo/citología , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Humanos , Immunoblotting , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Confocal , Monoacilglicerol Lipasas/genética , Neuronas/metabolismo , Células PC12 , Ratas , Receptor Cannabinoide CB1/genética , Receptor Cannabinoide CB1/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
8.
Eur Child Adolesc Psychiatry ; 23(10): 931-41, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24793873

RESUMEN

Cannabis remains one of the world's most widely used substance of abuse amongst pregnant women. Trends of the last 50 years show an increase in popularity in child-bearing women together with a constant increase in cannabis potency. In addition, potent herbal "legal" highs containing synthetic cannabinoids that mimic the effects of cannabis with unknown pharmacological and toxicological effects have gained rapid popularity amongst young adults. Despite the surge in cannabis use during pregnancy, little is known about the neurobiological and psychological consequences in the exposed offspring. In this review, we emphasize the importance of maternal programming, defined as the intrauterine presentation of maternal stimuli to the foetus, in neurodevelopment. In particular, we focus on cannabis-mediated maternal adverse effects, resulting in direct central nervous system alteration or sensitization to late-onset chronic and neuropsychiatric disorders. We compare clinical and preclinical experimental studies on the effects of foetal cannabis exposure until early adulthood, to stress the importance of animal models that permit the fine control of environmental variables and allow the dissection of cannabis-mediated molecular cascades in the developing central nervous system. In sum, we conclude that preclinical experimental models confirm clinical studies and that cannabis exposure evokes significant molecular modifications to neurodevelopmental programs leading to neurophysiological and behavioural abnormalities.


Asunto(s)
Encéfalo/efectos de los fármacos , Cannabis/toxicidad , Abuso de Marihuana/complicaciones , Trastornos Mentales/inducido químicamente , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Animales , Encéfalo/metabolismo , Discapacidades del Desarrollo/inducido químicamente , Discapacidades del Desarrollo/metabolismo , Discapacidades del Desarrollo/fisiopatología , Endocannabinoides/fisiología , Femenino , Feto/efectos de los fármacos , Feto/metabolismo , Humanos , Exposición Materna/efectos adversos , Intercambio Materno-Fetal , Trastornos Mentales/metabolismo , Trastornos Mentales/fisiopatología , Embarazo , Efectos Tardíos de la Exposición Prenatal/metabolismo , Efectos Tardíos de la Exposición Prenatal/fisiopatología , Transducción de Señal
9.
Nat Protoc ; 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38834919

RESUMEN

Neuronal pathways recruit large postsynaptic populations and maintain connections via distinct postsynaptic response types (PRTs). Until recently, PRTs were accessible as a selection criterion for single-cell RNA sequencing only through probing by low-throughput whole-cell electrophysiology. To overcome these limitations and target neurons on the basis of specific PRTs for soma collection and subsequent single-cell RNA sequencing, we developed Voltage-Seq using the genetically encoded voltage indicator Voltron in acute brain slices from mice. We also created an onsite analysis tool, VoltView, to guide soma collection of specific PRTs using a classifier based on a previously acquired database of connectomes from multiple animals. Here we present our procedure for preparing the optical path, the imaging setup and detailing the imaging and analysis steps, as well as a complete procedure for sequencing library preparation. This enables researchers to conduct our high-throughput all-optical synaptic assay and to obtain single-cell transcriptomic data from selected postsynaptic neurons. This also allows researchers to resolve the connectivity ratio of a specific pathway and explore the diversity of PRTs within that connectome. Furthermore, combining high throughput with quick analysis gives unique access to find specific connections within a large postsynaptic connectome. Voltage-Seq also allows the investigation of correlations between connectivity and gene expression changes in a postsynaptic cell-type-specific manner for both excitatory and inhibitory connections. The Voltage-Seq workflow can be completed in ~6 weeks, including 4-5 weeks for viral expression of the Voltron sensor. The technique requires knowledge of basic laboratory techniques, micromanipulator handling skills and experience in molecular biology and bioinformatics.

10.
Biochem Soc Trans ; 41(6): 1569-76, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24256256

RESUMEN

It is increasingly recognized that maternal exposure to metabolic (nutritional) stimuli, infections, illicit or prescription drugs and environmental stressors during pregnancy can predispose affected offspring to developing devastating postnatal illnesses. If detrimental maternal stimuli coincide with critical periods of tissue production and organogenesis then they can permanently derail key cellular differentiation programs. Maternal programming can thus either provoke developmental failure directly ('direct hit') or introduce latent developmental errors that enable otherwise sub-threshold secondary stressors to manifest as disease ('double hit') postnatally. Accumulating evidence suggests that nervous system development is tightly controlled by maternal metabolic stimuli, and whose synaptic wiring and integrative capacity are adversely affected by dietary and hormonal challenges, infections or episodes of illicit drug use. Endocannabinoids, a family of signal lipids derived from polyunsaturated fatty acids, have been implicated in neuronal fate determination, the control of axonal growth, synaptogenesis and synaptic neurotransmission. Therefore the continuum and interdependence of endocannabinoid actions during the formation and function of synapses together with dynamic changes in focal and circulating endocannabinoid levels upon maternal nutritional imbalance suggest that endocannabinoids can execute the 'reprogramming' of specific neuronal networks. In the present paper, we review molecular evidence suggesting that maternal nutrition and metabolism during pregnancy can affect the formation and function of the hippocampus and hypothalamus by altering endocannabinoid signalling such that neuropsychiatric diseases and obesity respectively ensue in affected offspring. Moreover, we propose that the placenta, fetal adipose and nervous tissues interact via endocannabinoid signals. Thus endocannabinoids are hypothesized to act as a molecular substrate of maternal programming.


Asunto(s)
Endocannabinoides/metabolismo , Trastornos Mentales/metabolismo , Síndrome Metabólico/metabolismo , Transducción de Señal , Edad de Inicio , Animales , Humanos
11.
eNeuro ; 10(7)2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37364998

RESUMEN

The striatum and subthalamic nucleus (STN) are considered to be the primary input nuclei of the basal ganglia. Projection neurons of both striatum and STN can extensively interact with other basal ganglia nuclei, and there is growing anatomic evidence of direct axonal connections from the STN to striatum. There remains, however, a pressing need to elucidate the organization and impact of these subthalamostriatal projections in the context of the diverse cell types constituting the striatum. To address this, we conducted monosynaptic retrograde tracing from genetically-defined populations of dorsal striatal neurons in adult male and female mice, quantifying the connectivity from STN neurons to spiny projection neurons, GABAergic interneurons, and cholinergic interneurons. In parallel, we used a combination of ex vivo electrophysiology and optogenetics to characterize the responses of a complementary range of dorsal striatal neuron types to activation of STN axons. Our tracing studies showed that the connectivity from STN neurons to striatal parvalbumin-expressing interneurons is significantly higher (∼4- to 8-fold) than that from STN to any of the four other striatal cell types examined. In agreement, our recording experiments showed that parvalbumin-expressing interneurons, but not the other cell types tested, commonly exhibited robust monosynaptic excitatory responses to subthalamostriatal inputs. Taken together, our data collectively demonstrate that the subthalamostriatal projection is highly selective for target cell type. We conclude that glutamatergic STN neurons are positioned to directly and powerfully influence striatal activity dynamics by virtue of their enriched innervation of GABAergic parvalbumin-expressing interneurons.


Asunto(s)
Núcleo Subtalámico , Masculino , Femenino , Ratones , Animales , Núcleo Subtalámico/metabolismo , Parvalbúminas/metabolismo , Cuerpo Estriado/metabolismo , Interneuronas/fisiología , Neuronas/metabolismo
12.
Nat Neurosci ; 26(7): 1245-1255, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37349481

RESUMEN

Excitatory projections from the lateral hypothalamic area (LHA) to the lateral habenula (LHb) drive aversive responses. We used patch-sequencing (Patch-seq) guided multimodal classification to define the structural and functional heterogeneity of the LHA-LHb pathway. Our classification identified six glutamatergic neuron types with unique electrophysiological properties, molecular profiles and projection patterns. We found that genetically defined LHA-LHb neurons signal distinct aspects of emotional or naturalistic behaviors, such as estrogen receptor 1-expressing (Esr1+) LHA-LHb neurons induce aversion, whereas neuropeptide Y-expressing (Npy+) LHA-LHb neurons control rearing behavior. Repeated optogenetic drive of Esr1+ LHA-LHb neurons induces a behaviorally persistent aversive state, and large-scale recordings showed a region-specific neural representation of the aversive signals in the prelimbic region of the prefrontal cortex. We further found that exposure to unpredictable mild shocks induced a sex-specific sensitivity to develop a stress state in female mice, which was associated with a specific shift in the intrinsic properties of bursting-type Esr1+ LHA-LHb neurons. In summary, we describe the diversity of LHA-LHb neuron types and provide evidence for the role of Esr1+ neurons in aversion and sexually dimorphic stress sensitivity.


Asunto(s)
Habénula , Femenino , Ratones , Animales , Habénula/fisiología , Hipotálamo/fisiología , Área Hipotalámica Lateral , Neuronas/fisiología , Afecto , Vías Nerviosas/fisiología
13.
Neuron ; 111(23): 3802-3818.e5, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-37776852

RESUMEN

Various specialized structural/functional properties are considered essential for contextual memory encoding by hippocampal mossy fiber (MF) synapses. Although investigated to exquisite detail in model organisms, synapses, including MFs, have undergone minimal functional interrogation in humans. To determine the translational relevance of rodent findings, we evaluated MF properties within human tissue resected to treat epilepsy. Human MFs exhibit remarkably similar hallmark features to rodents, including AMPA receptor-dominated synapses with small contributions from NMDA and kainate receptors, large dynamic range with strong frequency facilitation, NMDA receptor-independent presynaptic long-term potentiation, and strong cyclic AMP (cAMP) sensitivity of release. Array tomography confirmed the evolutionary conservation of MF ultrastructure. The astonishing congruence of rodent and human MF core features argues that the basic MF properties delineated in animal models remain critical to human MF function. Finally, a selective deficit in GABAergic inhibitory tone onto human MF postsynaptic targets suggests that unrestrained detonator excitatory drive contributes to epileptic circuit hyperexcitability.


Asunto(s)
Fibras Musgosas del Hipocampo , Sinapsis , Animales , Humanos , Fibras Musgosas del Hipocampo/fisiología , Sinapsis/fisiología , Potenciación a Largo Plazo/fisiología , Transducción de Señal
14.
Cell Rep ; 36(4): 109437, 2021 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-34320355

RESUMEN

The dorsal striatum plays a central role in the selection, execution, and evaluation of actions. An emerging model attributes action selection to the matrix and evaluation to the striosome compartment. Here, we use large-scale cell-type-specific calcium imaging to determine the activity of striatal projection neurons (SPNs) during motor and decision behaviors in the three major outputs of the dorsomedial striatum: Oprm1+ striosome versus D1+ direct and A2A+ indirect pathway SPNs. We find that Oprm1+ SPNs show complex tunings to simple movements and value-guided actions, which are conserved across many sessions in a single task but remap between contexts. During decision making, the SPN tuning profiles form a complete representation in which sequential SPN activity jointly encodes task progress and value. We propose that the three major output pathways in the dorsomedial striatum share a similarly complete representation of the entire action space, including task- and phase-specific signals of action value and choice.


Asunto(s)
Cuerpo Estriado/fisiología , Vías Nerviosas/fisiología , Animales , Conducta Animal , Conducta de Elección , Femenino , Locomoción/fisiología , Masculino , Ratones Transgénicos , Neuronas/fisiología , Análisis y Desempeño de Tareas
15.
Elife ; 92020 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-32496194

RESUMEN

The ability to modulate the efficacy of synaptic communication between neurons constitutes an essential property critical for normal brain function. Animal models have proved invaluable in revealing a wealth of diverse cellular mechanisms underlying varied plasticity modes. However, to what extent these processes are mirrored in humans is largely uncharted thus questioning their relevance in human circuit function. In this study, we focus on neurogliaform cells, that possess specialized physiological features enabling them to impart a widespread inhibitory influence on neural activity. We demonstrate that this prominent neuronal subtype, embedded in both mouse and human neural circuits, undergo remarkably similar activity-dependent modulation manifesting as epochs of enhanced intrinsic excitability. In principle, these evolutionary conserved plasticity routes likely tune the extent of neurogliaform cell mediated inhibition thus constituting canonical circuit mechanisms underlying human cognitive processing and behavior.


Asunto(s)
Interneuronas/fisiología , Plasticidad Neuronal , Adulto , Anciano , Animales , Evolución Biológica , Encéfalo/fisiología , Femenino , Humanos , Interneuronas/química , Masculino , Ratones , Persona de Mediana Edad , Neuroglía/química , Neuroglía/fisiología , Células Piramidales/química , Células Piramidales/fisiología , Adulto Joven
16.
JCI Insight ; 5(23)2020 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-33141759

RESUMEN

Ongoing societal changes in views on the medical and recreational roles of cannabis increased the use of concentrated plant extracts with a Δ9-tetrahydrocannabinol (THC) content of more than 90%. Even though prenatal THC exposure is widely considered adverse for neuronal development, equivalent experimental data for young age cohorts are largely lacking. Here, we administered plant-derived THC (1 or 5 mg/kg) to mice daily during P5-P16 and P5-P35 and monitored its effects on hippocampal neuronal survival and specification by high-resolution imaging and iTRAQ proteomics, respectively. We found that THC indiscriminately affects pyramidal cells and both cannabinoid receptor 1+ (CB1R)+ and CB1R- interneurons by P16. THC particularly disrupted the expression of mitochondrial proteins (complexes I-IV), a change that had persisted even 4 months after the end of drug exposure. This was reflected by a THC-induced loss of membrane integrity occluding mitochondrial respiration and could be partially or completely rescued by pH stabilization, antioxidants, bypassed glycolysis, and targeting either mitochondrial soluble adenylyl cyclase or the mitochondrial voltage-dependent anion channel. Overall, THC exposure during infancy induces significant and long-lasting reorganization of neuronal circuits through mechanisms that, in large part, render cellular bioenergetics insufficient to sustain key developmental processes in otherwise healthy neurons.


Asunto(s)
Dronabinol/efectos adversos , Neurogénesis/efectos de los fármacos , Animales , Animales Recién Nacidos , Muerte Celular/efectos de los fármacos , Femenino , Hipocampo/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/efectos de los fármacos
17.
Elife ; 92020 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-32053107

RESUMEN

In violation of Dale's principle several neuronal subtypes utilize more than one classical neurotransmitter. Molecular identification of vesicular glutamate transporter three and cholecystokinin expressing cortical interneurons (CCK+VGluT3+INTs) has prompted speculation of GABA/glutamate corelease from these cells for almost two decades despite a lack of direct evidence. We unequivocally demonstrate CCK+VGluT3+INT-mediated GABA/glutamate cotransmission onto principal cells in adult mice using paired recording and optogenetic approaches. Although under normal conditions, GABAergic inhibition dominates CCK+VGluT3+INT signaling, glutamatergic signaling becomes predominant when glutamate decarboxylase (GAD) function is compromised. CCK+VGluT3+INTs exhibit surprising anatomical diversity comprising subsets of all known dendrite targeting CCK+ interneurons in addition to the expected basket cells, and their extensive circuit innervation profoundly dampens circuit excitability under normal conditions. However, in contexts where the glutamatergic phenotype of CCK+VGluT3+INTs is amplified, they promote paradoxical network hyperexcitability which may be relevant to disorders involving GAD dysfunction such as schizophrenia or vitamin B6 deficiency.


Asunto(s)
Ácido Glutámico/metabolismo , Proteínas de Transporte Vesicular de Glutamato/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Animales , Interneuronas/metabolismo , Ratones
18.
Cell Rep ; 29(13): 4320-4333.e5, 2019 12 24.
Artículo en Inglés | MEDLINE | ID: mdl-31875543

RESUMEN

The striatum is organized into two major outputs formed by striatal projection neuron (SPN) subtypes with distinct molecular identities. In addition, histochemical division into patch and matrix compartments represents an additional spatial organization, proposed to mirror a motor-motivation regionalization. To map the molecular diversity of patch versus matrix SPNs, we genetically labeled mu opioid receptor (Oprm1) expressing neurons and performed single-nucleus RNA sequencing. This allowed us to establish molecular definitions of patch, matrix, and exopatch SPNs, as well as identification of Col11a1+ striatonigral SPNs. At the tissue level, mapping the expression of candidate markers reveals organization of spatial domains, which are conserved in the non-human primate brain. The spatial markers are cell-type independent and instead represent a spatial code found across all SPNs within a spatial domain. The spatiomolecular map establishes a formal system for targeting and studying striatal subregions and SPNs subtypes, beyond the classical striatonigral and striatopallidal division.


Asunto(s)
Neostriado/anatomía & histología , Neostriado/metabolismo , Animales , Colágeno Tipo XI/metabolismo , Femenino , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas/metabolismo , Receptores Opioides mu/metabolismo
19.
Neuron ; 102(5): 960-975.e6, 2019 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-31027966

RESUMEN

Neocortical circuits consist of stereotypical motifs that must self-assemble during development. Recent evidence suggests that the subtype identity of both excitatory projection neurons (PNs) and inhibitory interneurons (INs) is important for this process. We knocked out the transcription factor Satb2 in PNs to induce those of the intratelencephalic (IT) type to adopt a pyramidal tract (PT)-type identity. Loss of IT-type PNs selectively disrupted the lamination and circuit integration of INs derived from the caudal ganglionic eminence (CGE). Strikingly, reprogrammed PNs demonstrated reduced synaptic targeting of CGE-derived INs relative to controls. In control mice, IT-type PNs targeted neighboring CGE INs, while PT-type PNs did not in deep layers, confirming this lineage-dependent motif. Finally, single-cell RNA sequencing revealed that major CGE IN subtypes were conserved after loss of IT PNs, but with differential transcription of synaptic proteins and signaling molecules. Thus, IT-type PNs influence CGE-derived INs in a non-cell-autonomous manner during cortical development.


Asunto(s)
Linaje de la Célula , Interneuronas/metabolismo , Neocórtex/embriología , Sinapsis/metabolismo , Animales , Movimiento Celular , Expresión Génica , Técnicas de Inactivación de Genes , Interneuronas/citología , Proteínas de Unión a la Región de Fijación a la Matriz/genética , Ratones , Inhibición Neural/fisiología , Vías Nerviosas/embriología , Neuronas/citología , Neuronas/metabolismo , Tractos Piramidales/citología , Análisis de Secuencia de ARN , Análisis de la Célula Individual , Telencéfalo/citología , Factores de Transcripción/genética
20.
Nat Neurosci ; 20(2): 176-188, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27991900

RESUMEN

The hypothalamus contains the highest diversity of neurons in the brain. Many of these neurons can co-release neurotransmitters and neuropeptides in a use-dependent manner. Investigators have hitherto relied on candidate protein-based tools to correlate behavioral, endocrine and gender traits with hypothalamic neuron identity. Here we map neuronal identities in the hypothalamus by single-cell RNA sequencing. We distinguished 62 neuronal subtypes producing glutamatergic, dopaminergic or GABAergic markers for synaptic neurotransmission and harboring the ability to engage in task-dependent neurotransmitter switching. We identified dopamine neurons that uniquely coexpress the Onecut3 and Nmur2 genes, and placed these in the periventricular nucleus with many synaptic afferents arising from neuromedin S+ neurons of the suprachiasmatic nucleus. These neuroendocrine dopamine cells may contribute to the dopaminergic inhibition of prolactin secretion diurnally, as their neuromedin S+ inputs originate from neurons expressing Per2 and Per3 and their tyrosine hydroxylase phosphorylation is regulated in a circadian fashion. Overall, our catalog of neuronal subclasses provides new understanding of hypothalamic organization and function.


Asunto(s)
Dopamina/metabolismo , Neuronas Dopaminérgicas/metabolismo , Hipotálamo/metabolismo , Neuropéptidos/metabolismo , Tirosina 3-Monooxigenasa/metabolismo , Animales , Inmunohistoquímica/métodos , Ratones Endogámicos C57BL , Ratones Transgénicos , Neurotransmisores/fisiología , Núcleo Supraquiasmático/metabolismo , Transmisión Sináptica/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA