Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
ScientificWorldJournal ; 2014: 702071, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24592179

RESUMEN

Hybrids of Solanum melongena and S. aethiopicum are of interest as rootstocks of eggplant, as they are highly vigorous and can incorporate resistance to several diseases. However, hybridization between both species is difficult. Therefore, protocols for in vitro culture are of great interest for their micropropagation and biotechnological breeding. We assessed the organogenesis response from leaf explants in four interspecific hybrids and in their parents testing two organogenic media: SIM-A, containing 6-benzylaminopurine and kinetin, and SIM-B, which contains thidiazuron. A higher regeneration capacity in the hybrids compared to their parents was observed. Whereas in interspecific hybrids and in one accession of S. melongena similar regeneration rates were observed for SIM-A and SIM-B, higher regeneration was found in the rest of genotypes when thidiazuron was used. Rooting ability in the interspecific hybrids was lower in in vitro micropropagated plants (35-60%) than in plants regenerated from explants (100%). The addition of indolbutiric acid (1 mg L(-1)) induced roots in nonrooted genotypes. In summary, we have adjusted in vitro culture conditions for regenerating and rooting S. melongena × S. aethiopicum hybrids. We have also demonstrated that these hybrids are heterotic for regeneration, which may be of interest for basic science studies.


Asunto(s)
Vigor Híbrido , Carácter Cuantitativo Heredable , Solanum melongena/genética , Compuestos de Bencilo/farmacología , Cruzamiento/métodos , Cinetina/farmacología , Organogénesis de las Plantas , Compuestos de Fenilurea/farmacología , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/fisiología , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/fisiología , Purinas/farmacología , Solanum melongena/efectos de los fármacos , Solanum melongena/fisiología , Tiadiazoles/farmacología
2.
Nat Commun ; 14(1): 4071, 2023 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-37429879

RESUMEN

The network of thymic stromal cells provides essential niches with unique molecular cues controlling T cell development and selection. Recent single-cell RNA sequencing studies have uncovered previously unappreciated transcriptional heterogeneity among thymic epithelial cells (TEC). However, there are only very few cell markers that allow a comparable phenotypic identification of TEC. Here, using massively parallel flow cytometry and machine learning, we deconvoluted known TEC phenotypes into novel subpopulations. Using CITEseq, these phenotypes were related to corresponding TEC subtypes defined by the cells' RNA profiles. This approach allowed the phenotypic identification of perinatal cTEC and their physical localisation within the cortical stromal scaffold. In addition, we demonstrate the dynamic change in the frequency of perinatal cTEC in response to developing thymocytes and reveal their exceptional efficiency in positive selection. Collectively, our study identifies markers that allow for an unprecedented dissection of the thymus stromal complexity, as well as physical isolation of TEC populations and assignment of specific functions to individual TEC subtypes.


Asunto(s)
Células Epiteliales , Timocitos , Femenino , Embarazo , Humanos , Diferenciación Celular , Señales (Psicología) , ARN
3.
Elife ; 92020 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-32840480

RESUMEN

Ageing is characterised by cellular senescence, leading to imbalanced tissue maintenance, cell death and compromised organ function. This is first observed in the thymus, the primary lymphoid organ that generates and selects T cells. However, the molecular and cellular mechanisms underpinning these ageing processes remain unclear. Here, we show that mouse ageing leads to less efficient T cell selection, decreased self-antigen representation and increased T cell receptor repertoire diversity. Using a combination of single-cell RNA-seq and lineage-tracing, we find that progenitor cells are the principal targets of ageing, whereas the function of individual mature thymic epithelial cells is compromised only modestly. Specifically, an early-life precursor cell population, retained in the mouse cortex postnatally, is virtually extinguished at puberty. Concomitantly, a medullary precursor cell quiesces, thereby impairing maintenance of the medullary epithelium. Thus, ageing disrupts thymic progenitor differentiation and impairs the core immunological functions of the thymus.


Asunto(s)
Envejecimiento , Diferenciación Celular , Células Epiteliales/fisiología , Timo/fisiopatología , Transcriptoma/fisiología , Animales , Femenino , Ratones , Ratones Endogámicos C57BL , Análisis de la Célula Individual
4.
Front Immunol ; 9: 1312, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29942310

RESUMEN

For successful bone marrow transplantation (BMT), a preconditioning regime involving chemo and radiotherapy is used that results in DNA damage to both hematopoietic and stromal elements. Following radiation exposure, it is well recognized that a single wave of host-derived thymocytes reconstitutes the irradiated thymus, with donor-derived thymocytes appearing about 7 days post BMT. Our previous studies have demonstrated that, in the presence of donor hematopoietic cells lacking T lineage potential, these host-derived thymocytes are able to generate a polyclonal cohort of functionally mature peripheral T cells numerically comprising ~25% of the peripheral T cell pool of euthymic mice. Importantly, we demonstrated that radioresistant CD44+ CD25+ CD117+ DN2 progenitors were responsible for this thymic auto-reconstitution. Until recently, the mechanisms underlying the radioresistance of DN2 progenitors were unknown. Herein, we have used the in vitro "Plastic Thymus" culture system to perform a detailed investigation of the mechanisms responsible for the high radioresistance of DN2 cells compared with radiosensitive hematopoietic stem cells. Our results indicate that several aspects of DN2 biology, such as (i) rapid DNA damage response (DDR) activation in response to ionizing radiation-induced DNA damage, (ii) efficient repair of DNA double-strand breaks, and (iii) induction of a protective G1/S checkpoint contribute to promoting DN2 cell survival post-irradiation. We have previously shown that hypoxia increases the radioresistance of bone marrow stromal cells in vitro, at least in part by enhancing their DNA double-strand break (DNA DSB) repair capacity. Since the thymus is also a hypoxic environment, we investigated the potential effects of hypoxia on the DDR of DN2 thymocytes. Finally, we demonstrate for the first time that de novo DN2 thymocytes are able to rapidly repair DNA DSBs following thymic irradiation in vivo.

5.
Front Physiol ; 9: 439, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29755367

RESUMEN

Mesenchymal stromal cells (MSCs) are multipotent progenitors supporting bone marrow hematopoiesis. MSCs have an efficient DNA damage response (DDR) and are consequently relatively radio-resistant cells. Therefore, MSCs are key to hematopoietic reconstitution following total body irradiation (TBI) and bone marrow transplantation (BMT). The bone marrow niche is hypoxic and via the heterodimeric transcription factor Hypoxia-inducible factor-1 (Hif-1), hypoxia enhances the DDR. Using gene knock-down, we have previously shown that the Hif-1α subunit of Hif-1 is involved in mouse MSC radio-resistance, however its exact mechanism of action remains unknown. In order to dissect the involvement of Hif-1α in the DDR, we used CRISPR/Cas9 technology to generate a stable mutant of the mouse MSC cell line MS5 lacking Hif-1α expression. Herein, we show that it is the whole Hif-1 transcription factor, and not only the Hif-1α subunit, that modulates the DDR of mouse MSCs. This effect is dependent upon the presence of a Hif-1α protein capable of binding to both DNA and its heterodimeric partner Arnt (Hif-1ß). Detailed transcriptomic and proteomic analysis of Hif1a KO MS5 cells leads us to conclude that Hif-1α may be acting indirectly on the DNA repair process. These findings have important implications for the modulation of MSC radio-resistance in the context of BMT and cancer.

6.
Front Immunol ; 8: 418, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28450862

RESUMEN

Thymic epithelial cells (TECs) are the main components of the thymic stroma that support and control T-cell development. Preparative regimens using DNA-damaging agents, such as total body irradiation and/or chemotherapeutic drugs, that are necessary prior to bone marrow transplantation (BMT) have profound deleterious effects on the hematopoietic system, including the thymic stroma, which may be one of the main causes for the prolonged periods of T-cell deficiency and the inefficient T cell reconstitution that are common following BMT. The DNA damage response (DDR) is a complex signaling network that allows cells to respond to all sorts of genotoxic insults. Hypoxia is known to modulate the DDR and play a role affecting the survival capacity of different cell types. In this study, we have characterized in detail the DDR of cortical and medullary TEC lines and their response to ionizing radiation, as well as the effects of hypoxia on their DDR. Although both mTECs and cTECs display relatively high radio-resistance, mTEC cells have an increased survival capacity to ionizing radiation (IR)-induced DNA damage, and hypoxia specifically decreases the radio-resistance of mTECs by upregulating the expression of the pro-apoptotic factor Bim. Analysis of the expression of TEC functional factors by primary mouse TECs showed a marked decrease of highly important genes for TEC function and confirmed cTECs as the most affected cell type by IR. These findings have important implications for improving the outcomes of BMT and promoting successful T cell reconstitution.

7.
Cell Rep ; 5(4): 1095-107, 2013 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-24268773

RESUMEN

Cells must accurately replicate and segregate their DNA once per cell cycle in order to successfully transmit genetic information. During S phase in the presence of agents that cause replication stress, ATR-dependent checkpoints regulate origin firing and the replication machinery as well as prevent untimely mitosis. Here, we investigate the role of ATR during unperturbed growth in vertebrate cells. In the absence of ATR, individual replication forks progress more slowly, and an increased number of replication origins are activated. These cells also enter mitosis early and divide more rapidly, culminating in chromosome bridges and laggards at anaphase, failed cytokinesis, and cell death. Interestingly, cell death can be rescued by prolonging mitosis with partial inhibition of the mitotic cyclin-dependent kinase 1. Our data indicate that one of the essential roles of ATR during normal growth is to minimize the level of unreplicated DNA before the onset of mitosis.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/genética , Replicación del ADN/genética , Puntos de Control de la Fase M del Ciclo Celular/genética , Animales , Proteína Quinasa CDC2/antagonistas & inhibidores , Muerte Celular/genética , Línea Celular , Proliferación Celular , Pollos , Cromátides/genética , Citocinesis/genética , Técnicas de Inactivación de Genes , Quinolinas/farmacología , Origen de Réplica/genética , Tiazoles/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA