Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
J Environ Manage ; 256: 109953, 2020 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-31989980

RESUMEN

The study evaluated plants with phytoremediation potential that occur spontaneously in an area of copper mining tailings in Southern of Brazil. Eleven plant species were investigated for heavy metal concentrations in its biomass. All species showed copper concentrations greater than 100 mg kg-1, and seven species highlighted for copper concentrations between 321 and 586 mg kg-1 and these species showed Cr concentrations between 25 and 440 mg kg-1. The species S. viarum Dunal and B. trimera Less were highlighted showing the highest concentrations of Cr (586 mg kg-1) and Cu (440 mg kg-1), respectively. Seven species showed Pb phytoextraction potential and four species showed Cu phytostabilization potential. It was concluded that the investigated species are adapted to low nutritional conditions and showed tolerance to heavy metals, mainly Cu, Pb and Cr in its biomass.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Biodegradación Ambiental , Brasil , Cobre , Minería , Raíces de Plantas
2.
Ecotoxicol Environ Saf ; 130: 37-42, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27062344

RESUMEN

Environmental contamination of mercury (Hg) has caused public health concerns with focuses on the neurotoxic substance methylmercury, due to its bioaccumulation and biomagnification in food chains. The goals of the present study were to examine: (i) the transformation of methylmercury, thimerosal, phenylmercuric acetate and mercuric chloride by cultures of Pseudomonas putida V1, (ii) the presence of the genes merA and merB in P. putida V1, and (iii) the degradation pathways of methylmercury by P. putida V1. Strain V1 cultures readily degraded methylmercury, thimerosal, phenylmercury acetate, and reduced mercuric chloride into gaseous Hg(0). However, the Hg transformation in LB broth by P. putida V1 was influenced by the type of Hg compounds. The merA gene was detected in P. putida V1, on the other hand, the merB gene was not detected. The sequencing of this gene, showed high similarity (100%) to the mercuric reductase gene of other Pseudomonas spp. Furthermore, tests using radioactive (14)C-methylmercury indicated an uncommon release of (14)CO2 concomitant with the production of Hg(0). The results of the present work suggest that P. putida V1 has the potential to remove methylmercury from contaminated sites. More studies are warranted to determine the mechanism of removal of methylmercury by P. putida V1.


Asunto(s)
Compuestos de Metilmercurio/metabolismo , Pseudomonas putida/metabolismo , Proteínas Bacterianas/genética , Contaminantes Ambientales/metabolismo , Restauración y Remediación Ambiental , Liasas/genética , Cloruro de Mercurio/metabolismo , Oxidorreductasas/genética , Acetato Fenilmercúrico/metabolismo , Pseudomonas putida/genética , Timerosal/metabolismo
3.
Microb Ecol ; 69(2): 395-406, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25395291

RESUMEN

The Park Grass experiment (PGE) in the UK has been ongoing since 1856. Its purpose is to study the response of biological communities to the long-term treatments and associated changes in soil parameters, particularly soil pH. In this study, soil samples were collected across pH gradient (pH 3.6-7) and a range of fertilizers (nitrogen as ammonium sulfate, nitrogen as sodium nitrate, phosphorous) to evaluate the effects nutrients have on soil parameters and microbial community structure. Illumina 16S ribosomal RNA (rRNA) amplicon sequencing was used to determine the relative abundances and diversity of bacterial and archaeal taxa. Relationships between treatments, measured soil parameters, and microbial communities were evaluated. Clostridium, Bacteroides, Bradyrhizobium, Mycobacterium, Ruminococcus, Paenibacillus, and Rhodoplanes were the most abundant genera found at the PGE. The main soil parameter that determined microbial composition, diversity, and biomass in the PGE soil was pH. The most probable mechanism of the pH impact on microbial community may include mediation of nutrient availability in the soil. Addition of nitrogen to the PGE plots as ammonium sulfate decreases soil pH through increased nitrification, which causes buildup of soil carbon, and hence increases C/N ratio. Plant species richness and plant productivity did not reveal significant relationships with microbial diversity; however, plant species richness was positively correlated with soil microbial biomass. Plants responded to the nitrogen treatments with an increase in productivity and a decrease in the species richness.


Asunto(s)
Archaea/clasificación , Bacterias/clasificación , Poaceae/microbiología , Microbiología del Suelo , Suelo/química , Sulfato de Amonio/química , Archaea/genética , Archaea/aislamiento & purificación , Bacterias/genética , Bacterias/aislamiento & purificación , Biodiversidad , Biomasa , Carbono/química , Fertilizantes/análisis , Concentración de Iones de Hidrógeno , Nitratos/química , Nitrificación , Nitrógeno/química , Fósforo/química , Poaceae/química , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
4.
World J Microbiol Biotechnol ; 28(3): 1203-22, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22805841

RESUMEN

The use of microorganisms with hydrocarbon degrading capability and biosurfactant producers have emerged as an alternative for sustainable treatment of environmental passives. In this study 45 bacteria were isolated from samples contaminated with petrochemical residues, from which 21 were obtained from Landfarming soil contaminated with oily sludge, 11 were obtained from petrochemical industry effluents and 13 were originated directly from oily sludge. The metabolization capability of different carbon sources, growth capacity and tolerance, biosurfactant production and enzymes detection were determined. A preliminary selection carried out through the analysis of capability for degrading hydrocarbons showed that 22% of the isolates were able to degrade all carbon sources employed. On the other hand, in 36% of the isolates, the degradation of the oily sludge started within 18-48 h. Those isolates were considered as the most efficient ones. Twenty isolates, identified based on partial sequencing of the 16S rRNA gene, were pre-selected. These isolates showed ability for growing in a medium containing 1% of oily sludge as the sole carbon source, tolerance in a medium containing up to 30% of oily sludge, ability for biosurfactant production, and expression of enzymes involved in degradation of aliphatic and aromatic compounds. Five bacteria, identified as Stenotrophomonas acidaminiphila BB5, Bacillus megaterium BB6, Bacillus cibi, Pseudomonas aeruginosa, and Bacillus cereus BS20 were shown to be promising for use as inoculum in bioremediation processes (bioaugmentation) of areas contaminated with petrochemical residues since they can use oily sludge as the sole carbon source and produce biosurfactants.


Asunto(s)
Bacterias/aislamiento & purificación , Bacterias/metabolismo , Biodegradación Ambiental , Contaminantes Ambientales/metabolismo , Hidrocarburos/metabolismo , Microbiología del Suelo , Bacterias/efectos de los fármacos , Bacterias/crecimiento & desarrollo , Medios de Cultivo/química , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Tensoactivos/metabolismo
5.
Artículo en Inglés | MEDLINE | ID: mdl-21104499

RESUMEN

Isolation of soil microorganisms from a landfarming site with a 19-year history of petrochemical residues disposal was carried out. After isolation, the bacteria behavior in mineral medium with 1% commercial gasoline (24% ethanol) was evaluated. Parameters employed for microorganism evaluation and selection of those with the greatest degradation potential were: microbial growth; biosurfactant generation and compound reduction in commercial gasoline. Starting from bacteria that presented the best degradation results, consortiums formed by 4 distinct microorganisms were formed. A microbial growth in the presence of commercial gasoline was observed and, for most of the bacteria, degradations of compounds such as benzene, toluene and xylenes (BTX) as well as biosurfactant production was observed. Ethanol was partially degraded by the bacterial isolates although the data does not allow affirming that it was degraded preferentially to the aromatic hydrocarbons investigated. The analyzed consortiums present an efficiency of 95% to 98% for most of the commercial gasoline compounds and a preferential attack to ethanol under the essay condition was not observed within 72 h.


Asunto(s)
Biodegradación Ambiental , Gasolina/microbiología , Benceno/metabolismo , Etanol/metabolismo , Tolueno/metabolismo , Xilenos/metabolismo
6.
Curr Microbiol ; 58(6): 628-34, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19319602

RESUMEN

Lack of attention to soil and microbial characteristics that influence PAHs degradation has been a leading cause of failures in isolation of efficient PAH degraders and bioaugumentation processes with microbial consortia. This study compared the classic method of isolation of PAHs-degraders with a modified method employing a pre-enrichment respirometric analysis. The modified enrichment of PAH degrading microorganisms using in vitro microcosm resulted to reduced enrichment period and more efficient PAH-degrading microbial consortia. Results indicate that natural soils with strong heterotrophic microbial activity determined through pre-enrichment analysis, are better suited for the isolation of efficient PAH degrading microorganisms with significant reduction of the enrichment period.


Asunto(s)
Antracenos/metabolismo , Bacterias/aislamiento & purificación , Bacterias/metabolismo , Hidrocarburos Policíclicos Aromáticos/metabolismo , Microbiología del Suelo , Bacterias/genética , Biodegradación Ambiental , ADN Bacteriano/genética , ADN Ribosómico/genética , Datos de Secuencia Molecular , ARN Ribosómico 16S/genética , Contaminantes del Suelo/metabolismo
7.
Environ Sci Pollut Res Int ; 26(23): 24132-24142, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31228062

RESUMEN

Mining tailing areas may contain metal minerals such as Cu, Pb, Zn, Cr, and Cd at high concentrations and low nutrients for the growth of plants. This kind of conditions of the area, as well as lack of tailing structure, may limit the development of plants on these areas. Thus, the present study determined the metal, macronutrient, and micronutrient concentrations in the tissues of the roots and shoots of the Solanum viarum Dunal species as well as it evaluated the potential use of the plant for phytoremediation of mining tailing areas contaminated with heavy metals. The macronutrients, micronutrients, and heavy metals in the roots and shoots were determined by the digestion method with nitric and perchloric acid (HNO3-HClO4) and quantified by the ICP-OES. In S. viarum, the average concentrations of the metals presented in the dry biomass varied between the shoots and roots, being higher in the roots for metals such as Cu (229 mg kg-1), Zn (232 mg kg-1), Mn (251 mg kg-1), Cr (382 mg kg-1), Ni (178 mg kg-1), Pb (33 mg kg-1), and Ba (1123 mg kg-1). S. viarum indicates the possibility of a potential application in phytoremediation and treatment of areas contaminated with heavy metals.


Asunto(s)
Restauración y Remediación Ambiental/métodos , Metales Pesados/análisis , Minería , Contaminantes del Suelo/análisis , Solanum/química , Biodegradación Ambiental , Biomasa , Brasil , Metales Pesados/farmacocinética , Raíces de Plantas/química , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Brotes de la Planta/química , Brotes de la Planta/efectos de los fármacos , Brotes de la Planta/metabolismo , Contaminantes del Suelo/farmacocinética , Solanum/efectos de los fármacos , Solanum/metabolismo , Distribución Tisular
8.
Bioresour Technol ; 99(7): 2637-43, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-17572084

RESUMEN

In this study we evaluated the capacity of a defined microbial consortium (five bacteria: Mycobacterium fortuitum, Bacillus cereus, Microbacterium sp., Gordonia polyisoprenivorans, Microbacteriaceae bacterium, Naphthalene-utilizing bacterium; and a fungus identified as Fusarium oxysporum) isolated from a PAHs contaminated landfarm site to degrade and mineralize different concentrations (0, 250, 500 and 1000 mg kg(-1)) of anthracene, phenanthrene and pyrene in soil. PAHs degradation and mineralization was evaluated by gas chromatography and respirometry, respectively. The microbial consortium degraded on average, 99%, 99% and 96% of the different concentrations of anthracene, phenanthrene and pyrene in the soil, in 70 days, respectively. This consortium mineralized 78%, on average, of the different concentrations of the 3 PAHs in soil after 70 days. Contrarily, the autochthonous soil microbial population showed no substantial mineralization of the PAHs. Bacterial and fungal isolates from the consortium, when inoculated separately to the soil, were less effective in anthracene mineralization compared to the consortium. This signifies synergistic promotion of PAHs mineralization by mixtures of the monoculture isolates (the microbial consortium).


Asunto(s)
Compuestos Policíclicos/metabolismo , Microbiología del Suelo , Contaminantes del Suelo/metabolismo
9.
Bioresour Technol ; 99(7): 2644-9, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-17572085

RESUMEN

Iron may enhance polycyclic aromatic hydrocarbons (PAHs) degradation directly by increasing the activity of the enzymes involved in the aerobic biodegradation pathways for hydrocarbons, and indirectly by increasing the PAHs bioavailability due to the stimulation of biosurfactant production. In the present work, the PAH anthracene was used in order to study the effect of different forms and concentrations of iron on its biodegradation and surfactant production by Pseudomonas spp. isolates from a 14-years old petrochemical sludge landfarm site. Among the iron forms, iron nitrate was chosen based on its high solubility and effect on the increase in the growth of the isolate. Iron concentration of 0.1mM was selected as the limit between deficiency and toxicity for isolates growth and anthracene degradation. After 48 days Pseudomonas citronellolis isolate 222A degraded 72% of anthracene related to iron stimulation and surface tension decrease, indicating surfactant production. Pseudomonas aeruginosa isolate 332C was iron-stimulated but did not reduce surface tension while P. aeruginosa isolate 312A exhibited a noniron and surfactant dependence to degrade 72% of anthracene. Isolate 222A showed a direct dependence on iron to stimulate surfactant activity, which probably increased anthracene bioavailability. To our knowledge, this is the first report about the iron effect on anthracene degradation and surfactant production by a Pseudomonas sp. Based on the iron requirement and surfactant activity, the Pseudomonas isolates may be useful for bioremediation of PAHs.


Asunto(s)
Antracenos/metabolismo , Hierro/metabolismo , Pseudomonas/metabolismo , Contaminantes del Suelo/metabolismo
10.
Environ Sci Pollut Res Int ; 25(28): 28312-28321, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30083896

RESUMEN

Aquatic environments are widely affected by anthropogenic activities and efficient remediation of these areas requires detailed studies for each natural ecosystem. This research aimed to evaluate the natural phytoremediation potential of Hydrocotyle ranunculoides L., a floating aquatic macrophyte located in a polluted aquatic environment in South of the Rio Grande do Sul, Brazil. Nutrients such as P, K, Ca, Mg, and S and heavy metals such as Cu, Zn, Fe, Mn, Na, Cd, Cr, Ni, Pb, Al, As, Co, and V content in the roots and shoots of the plants were evaluated through nitric perchloric acid digestion (HNO3-HClO4) methods and quantified by ICP-OES. Bioconcentration factor (BCF), translocation factor (TF), plant effective number (PEN), and potential phytoremoval (mg m-2) were carried out. H. ranunculoides showed a substantial ability for phytoextracting P, Na, and As, since showed ability of uptake these elements from the water and translocate them to the shoots of the plants. H. ranunculoides also showed potential for application in rhizofiltration of Mg, S, Cu, Zn, Fe, Mn, Cd, Cr, Ni, Pb, Al, and V, since exhibited high potential to uptake higher levels in the roots. The highest potential for bioremoval (mg m-2) of the H. ranunculoides was detected for K, Ca, P (recommending thus the use for phytoextraction), Fe, and Al (highly recommended for rhizofiltration). Therefore, this species under study showed high potential for in situ phytoremediation at Santa Bárbara stream, and as a widespread species, it might be tested for phytoremediation in other sites.


Asunto(s)
Centella/crecimiento & desarrollo , Metales Pesados/análisis , Ríos/química , Contaminantes del Suelo/análisis , Contaminantes Químicos del Agua/análisis , Biodegradación Ambiental , Brasil , Centella/química , Raíces de Plantas/química , Raíces de Plantas/crecimiento & desarrollo
11.
Bioresour Technol ; 96(9): 1049-55, 2005 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15668201

RESUMEN

Bioremediation of diesel oil in soil can occur by natural attenuation, or treated by biostimulation or bioaugmentation. In this study we evaluated all three technologies on the degradation of total petroleum hydrocarbons (TPH) in soil. In addition, the number of diesel-degrading microorganisms present and microbial activity as indexed by the dehydrogenase assay were monitored. Soils contaminated with diesel oil in the field were collected from Long Beach, California, USA and Hong Kong, China. After 12 weeks of incubation, all three treatments showed differing effects on the degradation of light (C12-C23) and heavy (C23-C40) fractions of TPH in the soil samples. Bioaugmentation of the Long Beach soil showed the greatest degradation in the light (72.7%) and heavy (75.2%) fractions of TPH. Natural attenuation was more effective than biostimulation (addition of nutrients), most notably in the Hong Kong soil. The greatest microbial activity (dehydrogenase activity) was observed with bioaugmentation of the Long Beach soil (3.3-fold) and upon natural attenuation of the Hong Kong sample (4.0-fold). The number of diesel-degrading microorganisms and heterotrophic population was not influenced by the bioremediation treatments. Soil properties and the indigenous soil microbial population affect the degree of biodegradation; hence detailed site specific characterization studies are needed prior to deciding on the proper bioremediation method.


Asunto(s)
Descontaminación/métodos , Gasolina/microbiología , Microbiología del Suelo , Contaminantes del Suelo/farmacocinética , Suelo/análisis , Biodegradación Ambiental
12.
PLoS One ; 9(7): e101648, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24999826

RESUMEN

The activity of ammonia-oxidizing archaea (AOA) leads to the loss of nitrogen from soil, pollution of water sources and elevated emissions of greenhouse gas. To date, eight AOA genomes are available in the public databases, seven are from the group I.1a of the Thaumarchaeota and only one is from the group I.1b, isolated from hot springs. Many soils are dominated by AOA from the group I.1b, but the genomes of soil representatives of this group have not been sequenced and functionally characterized. The lack of knowledge of metabolic pathways of soil AOA presents a critical gap in understanding their role in biogeochemical cycles. Here, we describe the first complete genome of soil archaeon Candidatus Nitrososphaera evergladensis, which has been reconstructed from metagenomic sequencing of a highly enriched culture obtained from an agricultural soil. The AOA enrichment was sequenced with the high throughput next generation sequencing platforms from Pacific Biosciences and Ion Torrent. The de novo assembly of sequences resulted in one 2.95 Mb contig. Annotation of the reconstructed genome revealed many similarities of the basic metabolism with the rest of sequenced AOA. Ca. N. evergladensis belongs to the group I.1b and shares only 40% of whole-genome homology with the closest sequenced relative Ca. N. gargensis. Detailed analysis of the genome revealed coding sequences that were completely absent from the group I.1a. These unique sequences code for proteins involved in control of DNA integrity, transporters, two-component systems and versatile CRISPR defense system. Notably, genomes from the group I.1b have more gene duplications compared to the genomes from the group I.1a. We suggest that the presence of these unique genes and gene duplications may be associated with the environmental versatility of this group.


Asunto(s)
Amoníaco/metabolismo , Archaea/genética , Archaea/metabolismo , Genómica , Microbiología del Suelo , Adaptación Fisiológica/genética , Archaea/citología , Archaea/fisiología , Transporte Biológico/genética , Carbono/metabolismo , Ciclo del Carbono/genética , División Celular/genética , Quimiotaxis/genética , Reparación del ADN/genética , Replicación del ADN/genética , Metabolismo Energético/genética , Metales Pesados/toxicidad , Anotación de Secuencia Molecular , Nitrógeno/metabolismo , Océanos y Mares , Presión Osmótica , Oxidación-Reducción , Filogenia , Terpenos/metabolismo
13.
Biol Trace Elem Res ; 152(3): 411-6, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23417495

RESUMEN

High copper concentration is toxic for living organisms including humans. Biosorption is a bioremediation technique that can remove copper and other pollutants from aqueous medium and soils, consequently cleaning the environment. The aim of this study was, therefore, to investigate the influence of different copper compounds (Cu(II) as CuCl2; Cu(II) as CuSO4; and Cu(I) as CuCl) on copper bioreduction and biosorption using four copper-resistant bacteria isolated from the rhizosphere of two plants (Avena sativa and Plantago lanceolata) in aqueous matrix. Copper resistance profile, bioreduction, and biosorption after 48 h of incubation were evaluated. The isolates displayed high copper resistance. However, isolate A1 did not grow very well in the CuCl2 and isolate T5 was less resistant to copper in aqueous solutions amended with CuCl (Cu(I)). The best copper source for copper bioreduction and biosorption was CuSO4 and the isolates removed as much as ten times more copper than in aqueous solutions amended with the other copper compounds. Moreover, Cu(I) did not succumb to biosorption, although the microbes were resistant to aqueous solutions of CuCl. In summary, Cu(II) from CuSO4 was furthermost susceptible to bioreduction and biosorption for all isolates. This is an indication that copper contamination of the environment from the use of CuSO4 as an agrochemical is amenable to bioremediation.


Asunto(s)
Sulfato de Cobre/aislamiento & purificación , Cobre/aislamiento & purificación , Contaminantes Ambientales/aislamiento & purificación , Acinetobacter/genética , Acinetobacter/crecimiento & desarrollo , Acinetobacter/aislamiento & purificación , Adsorción , Avena/microbiología , Biodegradación Ambiental , Biomasa , Farmacorresistencia Bacteriana , Oxidación-Reducción , Raíces de Plantas/microbiología , Plantago/microbiología , Pseudomonas putida/genética , Pseudomonas putida/crecimiento & desarrollo , Pseudomonas putida/aislamiento & purificación , ARN Ribosómico 16S/genética , Rizosfera , Soluciones , Stenotrophomonas maltophilia/genética , Stenotrophomonas maltophilia/crecimiento & desarrollo , Stenotrophomonas maltophilia/aislamiento & purificación , Agua
14.
Front Microbiol ; 4: 104, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23641242

RESUMEN

Agricultural land management, such as fertilization, liming, and tillage affects soil properties, including pH, organic matter content, nitrification rates, and the microbial community. Three different study sites were used to identify microorganisms that correlate with agricultural land use and to determine which factors regulate the relative abundance of the microbial signatures of the agricultural land-use. The three sites included in this study are the Broadbalk Experiment at Rothamsted Research, UK, the Everglades Agricultural Area, Florida, USA, and the Kellogg Biological Station, Michigan, USA. The effects of agricultural management on the abundance and diversity of bacteria and archaea were determined using high throughput, barcoded 16S rRNA sequencing. In addition, the relative abundance of these organisms was correlated with soil features. Two groups of microorganisms involved in nitrogen cycle were highly correlated with land use at all three sites. The ammonia oxidizing-archaea, dominated by Ca. Nitrososphaera, were positively correlated with agriculture while a ubiquitous group of soil bacteria closely related to the diazotrophic symbiont, Bradyrhizobium, was negatively correlated with agricultural management. Analysis of successional plots showed that the abundance of ammonia oxidizing-archaea declined and the abundance of bradyrhizobia increased with time away from agriculture. This observation suggests that the effect of agriculture on the relative abundance of these genera is reversible. Soil pH and NH3 concentrations were positively correlated with archaeal abundance but negatively correlated with the abundance of Bradyrhizobium. The high correlations of Ca. Nitrososphaera and Bradyrhizobium abundances with agricultural management at three long-term experiments with different edaphoclimatic conditions allowed us to suggest these two genera as signature microorganisms for agricultural land use.

15.
Biol Trace Elem Res ; 146(1): 107-15, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22002857

RESUMEN

Copper is a toxic heavy metal widely used to microbial control especially in agriculture. Consequently, high concentrations of copper residues remain in soils selecting copper-resistant organisms. In vineyards, copper is routinely used for fungi control. This work was undertaken to study copper resistance by rhizosphere microorganisms from two plants (Avena sativa L. and Plantago lanceolata L.) common in vineyard soils. Eleven rhizosphere microorganisms were isolated, and four displayed high resistance to copper. The isolates were identified by 16S rRNA gene sequence analysis as Pseudomonas putida (A1), Stenotrophomonas maltophilia (A2) and Acinetobacter sp. (A6), isolated from Avena sativa rhizosphere, and Acinetobacter sp. (T5), isolated from Plantago lanceolata rhizosphere. The isolates displayed high copper resistance in the temperature range from 25°C to 35°C and pH in the range from 5.0 to 9.0. Pseudomonas putida A1 resisted as much as 1,000 mg L(-1) of copper. The isolates showed similar behavior on copper removal from liquid medium, with a bioremoval rate of 30% at 500 mg L(-1) after 24 h of growth. Speciation of copper revealed high copper biotransformation, reducing Cu(II) to Cu(I), capacity. Results indicate that our isolates are potential agents for copper bioremoval and bacterial stimulation of copper biosorption by Avena sativa and Plantago lanceolata.


Asunto(s)
Avena/microbiología , Bacterias/aislamiento & purificación , Cobre/metabolismo , Plantago/microbiología , Bacterias/metabolismo , Biodegradación Ambiental , Concentración de Iones de Hidrógeno , ARN Bacteriano/metabolismo , ARN Ribosómico 16S/metabolismo , Rizosfera , Microbiología del Suelo
16.
Front Microbiol ; 3: 210, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22715335

RESUMEN

Soil ammonia-oxidizing archaea (AOA) are highly abundant and play an important role in the nitrogen cycle. In addition, AOA have a significant impact on soil quality. Nitrite produced by AOA and further oxidized to nitrate can cause nitrogen loss from soils, surface and groundwater contamination, and water eutrophication. The AOA discovered to date are classified in the phylum Thaumarchaeota. Only a few archaeal genomes are available in databases. As a result, AOA genes are not well annotated, and it is difficult to mine and identify archaeal genes within metagenomic libraries. Nevertheless, 16S rRNA and comparative analysis of ammonia monooxygenase sequences show that soils can vary greatly in the relative abundance of AOA. In some soils, AOA can comprise more than 10% of the total prokaryotic community. In other soils, AOA comprise less than 0.5% of the community. Many approaches have been used to measure the abundance and diversity of this group including DGGE, T-RFLP, q-PCR, and DNA sequencing. AOA have been studied across different soil types and various ecosystems from the Antarctic dry valleys to the tropical forests of South America to the soils near Mount Everest. Different studies have identified multiple soil factors that trigger the abundance of AOA. These factors include pH, concentration of available ammonia, organic matter content, moisture content, nitrogen content, clay content, as well as other triggers. Land use management appears to have a major effect on the abundance of AOA in soil, which may be the result of nitrogen fertilizer used in agricultural soils. This review summarizes the published results on this topic and suggests future work that will increase our understanding of how soil management and edaphoclimatic factors influence AOA.

17.
Biol Trace Elem Res ; 146(1): 124-33, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21947860

RESUMEN

Long-term copper application in vineyards and copper mining activities cause heavy metal pollution sites. Such sites need remediation to protect soil and water quality. Bioremediation of contaminated areas through bioleaching can help to remove copper ions from the contaminated soils. Thus, the aim of this work was to evaluate the effects of different treatments for copper bioleaching in two diverse copper-contaminated soils (a 40-year-old vineyard and a copper mining waste) and to evaluate the effect on microbial community by applying denaturing gradient gel electrophoresis (DGGE) of 16S ribosomal DNA amplicons and DNA sequence analysis. Several treatments with HCl, H(2)SO(4), and FeSO(4) were evaluated by stimulation of bioleaching of copper in the soils. Treatments and extractions using FeSO(4) and H(2)SO(4) mixture at 30°C displayed more copper leaching than extractions with deionized water at room temperature. Treatment with H(2)SO(4) supported bioleaching of as much as 120 mg kg(-1) of copper from vineyard soil after 115 days of incubation. DGGE analysis of the treatments revealed that some treatments caused greater diversity of microorganisms in the vineyard soil compared to the copper mining waste. Nucleotide Blast of PCR-amplified fragments of 16S rRNA gene bands from DGGE indicated the presence of Rhodobacter sp., Silicibacter sp., Bacillus sp., Paracoccus sp., Pediococcus sp., a Myxococcales, Clostridium sp., Thiomonas sp., a firmicute, Caulobacter vibrioides, Serratia sp., and an actinomycetales in vineyard soil. Contrarily, Sphingomonas was the predominant genus in copper mining waste in most treatments. Paracoccus sp. and Enterobacter sp. were also identified from DGGE bands of the copper mining waste. Paracoccus species is involved in the copper bioleaching by sulfur oxidation system, liberating the copper bounded in the soils and hence promoting copper bioremediation. Results indicate that stimulation of bioleaching with a combination of FeSO(4) and H(2)SO(4) promoted bioleaching in the soils and can be employed ex situ to remediate copper-impacted soils.


Asunto(s)
Cobre/química , Microbiología del Suelo , Suelo/química , Biodegradación Ambiental , ADN Bacteriano/química , Microbiología Industrial , Minería , Filogenia , Reacción en Cadena de la Polimerasa , Calidad del Agua
18.
Biol Trace Elem Res ; 143(3): 1729-39, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21286847

RESUMEN

This study sought to evaluate the potential of perennial peanut (Arachis pintoi) for copper phytoremediation in vineyard soils (Inceptisol and Mollisol) contaminated with copper and copper mining waste. Our results showed high phytomass production of perennial peanut in both vineyard soils. Macronutrient uptakes were not negatively affected by perennial peanut cultivated in all contaminated soils. Plants cultivated in Mollisol showed high copper concentrations in the roots and shoots of 475 and 52 mg kg(-1), respectively. Perennial peanut plants showed low translocation factor values for Cu, although these plants showed high bioaccumulation factor (BCF) for both vineyard soils, Inceptisol and Mollisol, with BCF values of 3.83 and 3.24, respectively, being characterized as a copper hyperaccumulator plant in these soils. Copper phytoextraction from Inceptisol soil was the highest for both roots and entire plant biomass, with more than 800 mg kg(-1) of copper in whole plant. The highest potential copper phytoextraction by perennial peanut was in Inceptisol soil with copper removal of 2,500 g ha(-1). Also, perennial peanut showed high potential for copper phytoremoval in copper mining waste and Mollisol with 1,700 and 1,500 g of copper per hectare, respectively. In addition, perennial peanuts characterized high potential for phytoextraction and phytostabilization of copper in vineyard soils and copper mining waste.


Asunto(s)
Arachis/metabolismo , Biodegradación Ambiental , Cobre/aislamiento & purificación , Minería , Contaminantes del Suelo/aislamiento & purificación , Biomasa
19.
Biol Trace Elem Res ; 143(2): 1182-92, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21104339

RESUMEN

Environmental copper contamination is a serious human health problem. Copper reductase is produced by microorganisms to facilitate copper uptake by ATPases into the cells increasing copper biosorption. This study assessed the reduction of Cu(II) by cell-free extracts of a highly copper-resistant bacterium, Pseudomonas sp. strain NA, isolated from vineyard soil contaminated with copper. Both intact cells and cell-free extract of Pseudomonas sp. strain NA displayed substantial reduction of Cu(II). Intact cells reduced more then 80 mg L(-1) of Cu(II) from medium amended with 200 mg L(-1) of copper after 24 h of incubation. Cell-free extract of the isolate reduced more than 65% of the Cu(II) at initial copper concentration of 200 mg L(-1) after 24 h. Soluble protein production was high at 72 h of incubation at 100 mg L(-1) of copper, with more then 60 µg L(-1) of total soluble protein in cell-free extract recorded. Cu(II) reduction by isolate NA was increased when copper concentration increased for both intact cells and cell-free extract. Results indicate that Pseudomonas sp. strain NA produces copper reductase enzyme as the key mechanism of copper biotransformation.


Asunto(s)
Proteínas Bacterianas/metabolismo , Cobre/metabolismo , Oxidorreductasas/metabolismo , Pseudomonas/enzimología , Pseudomonas/metabolismo , Oxidación-Reducción
20.
Bioresour Technol ; 102(23): 11003-10, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21993328

RESUMEN

The biodegradation capacity of aliphatic and aromatic hydrocarbons of petrochemical oily sludge in liquid medium by a bacterial consortium and five pure bacterial cultures was analyzed. Three bacteria isolated from petrochemical oily sludge, identified as Stenotrophomonas acidaminiphila, Bacillus megaterium and Bacillus cibi, and two bacteria isolated from a soil contaminated by petrochemical waste, identified as Pseudomonas aeruginosa and Bacillus cereus demonstrated efficiency in oily sludge degradation when cultivated during 40 days. The bacterial consortium demonstrated an excellent oily sludge degradation capacity, reducing 90.7% of the aliphatic fraction and 51.8% of the aromatic fraction, as well as biosurfactant production capacity, achieving 39.4% reduction of surface tension of the culture medium and an emulsifying activity of 55.1%. The results indicated that the bacterial consortium has potential to be applied in bioremediation of petrochemical oily sludge contaminated environments, favoring the reduction of environmental passives and increasing industrial productivity.


Asunto(s)
Bacterias/metabolismo , Biotecnología/métodos , Aguas del Alcantarillado/microbiología , Bacillus/metabolismo , Bacillus megaterium/metabolismo , Biodegradación Ambiental , Medios de Cultivo/química , Hidrocarburos/química , Concentración de Iones de Hidrógeno , Mutágenos , Aceites , Petróleo/metabolismo , Microbiología del Suelo , Contaminantes del Suelo/metabolismo , Stenotrophomonas/metabolismo , Tensión Superficial , Tensoactivos/química , Temperatura , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA