Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Sci Technol ; 51(14): 8001-8009, 2017 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-28678487

RESUMEN

Methane emissions from oil and gas facilities can exhibit operation-dependent temporal variability; however, this variability has yet to be fully characterized. A field campaign was conducted in June 2014 in the Eagle Ford basin, Texas, to examine spatiotemporal variability of methane emissions using four methods. Clusters of methane-emitting sources were estimated from 14 aerial surveys of two ("East" or "West") 35 × 35 km grids, two aircraft-based mass balance methods measured emissions repeatedly at five gathering facilities and three flares, and emitting equipment source-types were identified via helicopter-based infrared camera at 13 production and gathering facilities. Significant daily variability was observed in the location, number (East: 44 ± 20% relative standard deviation (RSD), N = 7; West: 37 ± 30% RSD, N = 7), and emission rates (36% of repeat measurements deviate from mean emissions by at least ±50%) of clusters of emitting sources. Emission rates of high emitters varied from 150-250 to 880-1470 kg/h and regional aggregate emissions of large sources (>15 kg/h) varied up to a factor of ∼3 between surveys. The aircraft-based mass balance results revealed comparable variability. Equipment source-type changed between surveys and alterations in operational-mode significantly influenced emissions. Results indicate that understanding temporal emission variability will promote improved mitigation strategies and additional analysis is needed to fully characterize its causes.


Asunto(s)
Metano , Gas Natural , Contaminantes Atmosféricos , Texas
2.
Proc Natl Acad Sci U S A ; 111(17): 6237-42, 2014 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-24733927

RESUMEN

The identification and quantification of methane emissions from natural gas production has become increasingly important owing to the increase in the natural gas component of the energy sector. An instrumented aircraft platform was used to identify large sources of methane and quantify emission rates in southwestern PA in June 2012. A large regional flux, 2.0-14 g CH4 s(-1) km(-2), was quantified for a ∼ 2,800-km(2) area, which did not differ statistically from a bottom-up inventory, 2.3-4.6 g CH4 s(-1) km(-2). Large emissions averaging 34 g CH4/s per well were observed from seven well pads determined to be in the drilling phase, 2 to 3 orders of magnitude greater than US Environmental Protection Agency estimates for this operational phase. The emissions from these well pads, representing ∼ 1% of the total number of wells, account for 4-30% of the observed regional flux. More work is needed to determine all of the sources of methane emissions from natural gas production, to ascertain why these emissions occur and to evaluate their climate and atmospheric chemistry impacts.

3.
Environ Sci Technol ; 50(4): 2075-81, 2016 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-26764563

RESUMEN

Approximately 150 billion cubic meters (BCM) of natural gas is flared and vented in the world annually, emitting greenhouse gases and other pollutants with no energy benefit. About 7 BCM per year is flared in the United States, and half is from North Dakota alone. There are few emission measurements from associated gas flares and limited black carbon (BC) emission factors have been previously reported from the field. Emission plumes from 26 individual flares in the Bakken formation in North Dakota were sampled. Methane, carbon dioxide, and BC were measured simultaneously, allowing the calculation of BC mass emission factors using the carbon balance method. Particle optical absorption was measured using a three-wavelength particle soot absorption photometer (PSAP) and BC particle number and mass concentrations were measured with a single particle soot photometer. The BC emission factors varied over 2 orders of magnitude, with an average and uncertainty range of 0.14 ± 0.12 g/kg hydrocarbons in associated gas and a median of 0.07 g/kg which represents a lower bound on these measurements. An estimation of the BC emission factor derived from PSAP absorption provides an upper bound at 3.1 g/kg. These results are lower than previous estimations and laboratory measurements. The BC mass absorption cross section was 16 ± 12 m(2)/g BC at 530 nm. The average absorption Ångström exponent was 1.2 ± 0.8, suggesting that most of the light absorbing aerosol measured was black carbon and the contribution of light absorbing organic carbon was small.


Asunto(s)
Contaminantes Atmosféricos/análisis , Gas Natural , Industria del Petróleo y Gas , Hollín/análisis , Aerosoles/análisis , Carbono/análisis , Dióxido de Carbono/análisis , Gases , Metano/análisis , North Dakota
4.
Environ Sci Technol ; 50(16): 8910-7, 2016 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-27487422

RESUMEN

This paper describes process-based estimation of CH4 emissions from sources in Indianapolis, IN and compares these with atmospheric inferences of whole city emissions. Emissions from the natural gas distribution system were estimated from measurements at metering and regulating stations and from pipeline leaks. Tracer methods and inverse plume modeling were used to estimate emissions from the major landfill and wastewater treatment plant. These direct source measurements informed the compilation of a methane emission inventory for the city equal to 29 Gg/yr (5% to 95% confidence limits, 15 to 54 Gg/yr). Emission estimates for the whole city based on an aircraft mass balance method and from inverse modeling of CH4 tower observations were 41 ± 12 Gg/yr and 81 ± 11 Gg/yr, respectively. Footprint modeling using 11 days of ethane/methane tower data indicated that landfills, wastewater treatment, wetlands, and other biological sources contribute 48% while natural gas usage and other fossil fuel sources contribute 52% of the city total. With the biogenic CH4 emissions omitted, the top-down estimates are 3.5-6.9 times the nonbiogenic city inventory. Mobile mapping of CH4 concentrations showed low level enhancement of CH4 throughout the city reflecting diffuse natural gas leakage and downstream usage as possible sources for the missing residual in the inventory.


Asunto(s)
Contaminantes Atmosféricos , Metano , Indiana , Gas Natural , Instalaciones de Eliminación de Residuos
5.
Environ Sci Technol ; 49(13): 7904-13, 2015 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-26148549

RESUMEN

We report measurements of methane (CH4) emission rates observed at eight different high-emitting point sources in the Barnett Shale, Texas, using aircraft-based methods performed as part of the Barnett Coordinated Campaign. We quantified CH4 emission rates from four gas processing plants, one compressor station, and three landfills during five flights conducted in October 2013. Results are compared to other aircraft- and surface-based measurements of the same facilities, and to estimates based on a national study of gathering and processing facilities emissions and 2013 annual average emissions reported to the U.S. EPA Greenhouse Gas Reporting Program (GHGRP). For the eight sources, CH4 emission measurements from the aircraft-based mass balance approach were a factor of 3.2-5.8 greater than the GHGRP-based estimates. Summed emissions totaled 7022 ± 2000 kg hr(-1), roughly 9% of the entire basin-wide CH4 emissions estimated from regional mass balance flights during the campaign. Emission measurements from five natural gas management facilities were 1.2-4.6 times larger than emissions based on the national study. Results from this study were used to represent "super-emitters" in a newly formulated Barnett Shale Inventory, demonstrating the importance of targeted sampling of "super-emitters" that may be missed by random sampling of a subset of the total.


Asunto(s)
Contaminantes Atmosféricos/análisis , Aeronaves , Sedimentos Geológicos/química , Metano/análisis , Geografía , Texas , Instalaciones de Eliminación de Residuos
6.
Environ Sci Technol ; 48(16): 9548-54, 2014 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-25051053

RESUMEN

Flaring to dispose of natural gas has increased in the United States and is typically assumed to be 98% efficient, accounting for both incomplete combustion and venting during unintentional flame termination. However, no in situ measurements of flare emissions have been reported. We used an aircraft platform to sample 10 flares in North Dakota and 1 flare in Pennsylvania, measuring CO2, CH4, and meteorological data. Destruction removal efficiency (DRE) was calculated by assuming a flare natural gas input composition of 60-100% CH4. In all cases flares were >99.80 efficient at the 25% quartile. Crosswinds up to 15 m/s were observed, but did not significantly adversely affect efficiency. During analysis unidentified peaks of CH4, most likely from unknown venting practices, appeared much larger in magnitude than emissions from flaring practices. Our analysis suggests 98% efficiency for nonsputtering flares is a conservative estimate for incomplete combustion and that the unidentified venting is a greater contributor to CH4 emissions.


Asunto(s)
Contaminantes Atmosféricos/análisis , Metano/análisis , Gas Natural , Dióxido de Carbono/análisis , Humanos , North Dakota , Pennsylvania , Estados Unidos
7.
Rapid Commun Mass Spectrom ; 23(23): 3868-74, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19902416

RESUMEN

Developments in continuous-flow isotope ratio mass spectrometry have made possible the rapid analysis of delta13C in CO2 of small-volume gas samples with precisions of < or = 0.1 per thousand. Prior research has validated the integrity of septum-capped vials for collection and short-term storage of gas samples. However, there has been little investigation into the sources of contamination during the preparation and analysis of low-concentration gas samples. In this study we determined (1) sources of contamination on a Gasbench II, (2) developed an analytical procedure to reduce contamination, and (3) identified an efficient, precise method for introducing sample gas into vials. We investigated three vial-filling procedures: (1) automated flush-fill (AFF), (2) vacuum back-fill (VBF), and (3) hand-fill (HF). Treatments were evaluated based on the time required for preparation, observed contamination, and multi-vial precision. The worst-case observed contamination was 4.5% of sample volume. Our empirical estimate showed that this level of contamination results in an error of 1.7 per thousand for samples with near-ambient CO2 concentrations and isotopic values that followed a high-concentration carbonate reference with an isotope ratio of -47 per thousand (IAEA-CO-9). This carry-over contamination on the Gasbench can be reduced by placing a helium-filled vial between the standard and the succeeding sample or by ignoring the first two of five sample peaks generated by each analysis. High-precision (SD < or = 0.1 per thousand) results with no detectable room-air contamination were observed for AFF and VBF treatments. In contrast, the precision of HF treatments was lower (SD > or = 0.2 per thousand). VBF was optimal for the preparation of gas samples, as it yielded faster throughput at similar precision to AFF.

8.
Artículo en Inglés | MEDLINE | ID: mdl-30997362

RESUMEN

The objective of the Indianapolis Flux Experiment (INFLUX) is to develop, evaluate and improve methods for measuring greenhouse gas (GHG) emissions from cities. INFLUX's scientific objectives are to quantify CO2 and CH4 emission rates at 1 km resolution with a 10% or better accuracy and precision, to determine whole-city emissions with similar skill, and to achieve high (weekly or finer) temporal resolution at both spatial resolutions. The experiment employs atmospheric GHG measurements from both towers and aircraft, atmospheric transport observations and models, and activity-based inventory products to quantify urban GHG emissions. Multiple, independent methods for estimating urban emissions are a central facet of our experimental design. INFLUX was initiated in 2010 and measurements and analyses are ongoing. To date we have quantified urban atmospheric GHG enhancements using aircraft and towers with measurements collected over multiple years, and have estimated whole-city CO2 and CH4 emissions using aircraft and tower GHG measurements, and inventory methods. Significant differences exist across methods; these differences have not yet been resolved; research to reduce uncertainties and reconcile these differences is underway. Sectorally- and spatially-resolved flux estimates, and detection of changes of fluxes over time, are also active research topics. Major challenges include developing methods for distinguishing anthropogenic from biogenic CO2 fluxes, improving our ability to interpret atmospheric GHG measurements close to urban GHG sources and across a broader range of atmospheric stability conditions, and quantifying uncertainties in inventory data products. INFLUX data and tools are intended to serve as an open resource and test bed for future investigations. Well-documented, public archival of data and methods is under development in support of this objective.

9.
J Geophys Res Atmos ; 122(17): 9467-9484, 2017 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-29308343

RESUMEN

Elevated water vapor (H2Ov) mole fractions were occassionally observed downwind of Indianapolis, IN, and the Washington, D.C.-Baltimore, MD, area during airborne mass balance experiments conducted during winter months between 2012 and 2015. On days when an urban H2Ov excess signal was observed, H2Ov emissions estimates range between 1.6 × 104 and 1.7 × 105 kg s-1, and account for up to 8.4% of the total (background + urban excess) advected flow of atmospheric boundary layer H2Ov from the urban study sites. Estimates of H2Ov emissions from combustion sources and electricity generation facility cooling towers are 1-2 orders of magnitude smaller than the urban H2Ov emission rates estimated from observations. Instances of urban H2Ov enhancement could be a result of differences in snowmelt and evaporation rates within the urban area, due in part to larger wintertime anthropogenic heat flux and land cover differences, relative to surrounding rural areas. More study is needed to understand why the urban H2Ov excess signal is observed on some days, and not others. Radiative transfer modeling indicates that the observed urban enhancements in H2Ov and other greenhouse gas mole fractions contribute only 0.1°C day-1 to the urban heat island at the surface. This integrated warming through the boundary layer is offset by longwave cooling by H2Ov at the top of the boundary layer. While the radiative impacts of urban H2Ov emissions do not meaningfully influence urban heat island intensity, urban H2Ov emissions may have the potential to alter downwind aerosol and cloud properties.

10.
J Geophys Res Atmos ; 121(10): 5213-5236, 2016 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-32818124

RESUMEN

Based on a uniquely dense network of surface towers measuring continuously the atmospheric concentrations of greenhouse gases (GHGs), we developed the first comprehensive monitoring systems of CO2 emissions at high resolution over the city of Indianapolis. The urban inversion evaluated over the 2012-2013 dormant season showed a statistically significant increase of about 20% (from 4.5 to 5.7 MtC ± 0.23 MtC) compared to the Hestia CO2 emission estimate, a state-of-the-art building-level emission product. Spatial structures in prior emission errors, mostly undetermined, appeared to affect the spatial pattern in the inverse solution and the total carbon budget over the entire area by up to 15%, while the inverse solution remains fairly insensitive to the CO2 boundary inflow and to the different prior emissions (i.e., ODIAC). Preceding the surface emission optimization, we improved the atmospheric simulations using a meteorological data assimilation system also informing our Bayesian inversion system through updated observations error variances. Finally, we estimated the uncertainties associated with undetermined parameters using an ensemble of inversions. The total CO2 emissions based on the ensemble mean and quartiles (5.26-5.91 MtC) were statistically different compared to the prior total emissions (4.1 to 4.5 MtC). Considering the relatively small sensitivity to the different parameters, we conclude that atmospheric inversions are potentially able to constrain the carbon budget of the city, assuming sufficient data to measure the inflow of GHG over the city, but additional information on prior emission error structures are required to determine the spatial structures of urban emissions at high resolution.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA