Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Arch Microbiol ; 206(7): 310, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38896324

RESUMEN

The RNA-Seq profiling of Herbaspirillum seropedicae SmR1 wild-type and ntrC mutant was performed under aerobic and three nitrogen conditions (ammonium limitation, ammonium shock, and nitrate shock) to identify the major metabolic pathways modulated by these nitrogen sources and those dependent on NtrC. Under ammonium limitation, H. seropedicae scavenges nitrogen compounds by activating transporter systems and metabolic pathways to utilize different nitrogen sources and by increasing proteolysis, along with genes involved in carbon storage, cell protection, and redox balance, while downregulating those involved in energy metabolism and protein synthesis. Growth on nitrate depends on the narKnirBDHsero_2899nasA operon responding to nitrate and NtrC. Ammonium shock resulted in a higher number of genes differently expressed when compared to nitrate. Our results showed that NtrC activates a network of transcriptional regulators to prepare the cell for nitrogen starvation, and also synchronizes nitrogen metabolism with carbon and redox balance pathways.


Asunto(s)
Proteínas Bacterianas , Regulación Bacteriana de la Expresión Génica , Herbaspirillum , Nitratos , Nitrógeno , Herbaspirillum/metabolismo , Herbaspirillum/genética , Nitratos/metabolismo , Nitrógeno/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Compuestos de Amonio/metabolismo , Adaptación Fisiológica , Redes y Vías Metabólicas/genética , Carbono/metabolismo
2.
Molecules ; 28(2)2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36677929

RESUMEN

Arthroplasty is an orthopedic surgical procedure that replaces a dysfunctional joint by an orthopedic prosthesis, thereby restoring joint function. Upon the use of the joint prosthesis, a wearing process begins, which releases components such as titanium dioxide (TiO2) that trigger an immune response in the periprosthetic tissue, leading to arthritis, arthroplasty failure, and the need for revision. Flavonoids belong to a class of natural polyphenolic compounds that possess antioxidant and anti-inflammatory activities. Hesperidin methyl chalcone's (HMC) analgesic, anti-inflammatory, and antioxidant effects have been investigated in some models, but its activity against the arthritis caused by prosthesis-wearing molecules, such as TiO2, has not been investigated. Mice were treated with HMC (100 mg/kg, intraperitoneally (i.p.)) 24 h after intra-articular injection of 3 mg/joint of TiO2, which was used to induce chronic arthritis. HMC inhibited mechanical hyperalgesia, thermal hyperalgesia, joint edema, leukocyte recruitment, and oxidative stress in the knee joint (alterations in gp91phox, GSH, superoxide anion, and lipid peroxidation) and in recruited leukocytes (total reactive oxygen species and GSH); reduced patellar proteoglycan degradation; and decreased pro-inflammatory cytokine production. HMC also reduced the activation of nociceptor-sensory TRPV1+ and TRPA1+ neurons. These effects occurred without renal, hepatic, or gastric damage. Thus, HMC reduces arthritis triggered by TiO2, a component released upon wearing of prosthesis.


Asunto(s)
Artritis , Chalconas , Hesperidina , Ratones , Animales , Nociceptores/metabolismo , Chalconas/uso terapéutico , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Artritis/tratamiento farmacológico , Estrés Oxidativo , Antioxidantes/farmacología , Antiinflamatorios/farmacología , Hiperalgesia/tratamiento farmacológico , Citocinas/metabolismo
3.
BMC Genomics ; 20(1): 630, 2019 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-31375067

RESUMEN

BACKGROUND: Herbaspirillum seropedicae is an environmental ß-proteobacterium that is capable of promoting the growth of economically relevant plants through biological nitrogen fixation and phytohormone production. However, strains of H. seropedicae have been isolated from immunocompromised patients and associated with human infections and deaths. In this work, we sequenced the genomes of two clinical strains of H. seropedicae, AU14040 and AU13965, and compared them with the genomes of strains described as having an environmental origin. RESULTS: Both genomes were closed, indicating a single circular chromosome; however, strain AU13965 also carried a plasmid of 42,977 bp, the first described in the genus Herbaspirillum. Genome comparison revealed that the clinical strains lost the gene sets related to biological nitrogen fixation (nif) and the type 3 secretion system (T3SS), which has been described to be essential for interactions with plants. Comparison of the pan-genomes of clinical and environmental strains revealed different sets of accessorial genes. However, antimicrobial resistance genes were found in the same proportion in all analyzed genomes. The clinical strains also acquired new genes and genomic islands that may be related to host interactions. Among the acquired islands was a cluster of genes related to lipopolysaccharide (LPS) biosynthesis. Although highly conserved in environmental strains, the LPS biosynthesis genes in the two clinical strains presented unique and non-orthologous genes within the genus Herbaspirillum. Furthermore, the AU14040 strain cluster contained the neuABC genes, which are responsible for sialic acid (Neu5Ac) biosynthesis, indicating that this bacterium could add it to its lipopolysaccharide. The Neu5Ac-linked LPS could increase the bacterial resilience in the host aiding in the evasion of the immune system. CONCLUSIONS: Our findings suggest that the lifestyle transition from environment to opportunist led to the loss and acquisition of specific genes allowing adaptations to colonize and survive in new hosts. It is possible that these substitutions may be the starting point for interactions with new hosts.


Asunto(s)
Adaptación Fisiológica/genética , Ambiente , Genómica , Herbaspirillum/genética , Herbaspirillum/fisiología , Interacciones Huésped-Patógeno/genética , Evolución Molecular , Genoma Bacteriano/genética , Islas Genómicas/genética , Herbaspirillum/metabolismo , Humanos , Lipopolisacáridos/biosíntesis , Filogenia , Sideróforos/biosíntesis , Especificidad de la Especie
4.
Inflammopharmacology ; 27(6): 1285-1296, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30945072

RESUMEN

Rutin is a glycone form of the flavonol quercetin and it reduces inflammatory pain in animal models. Therapy with granulocyte colony-stimulating factor (G-CSF) is known by the pain caused as its main side effect. The effect of rutin and its mechanisms of action were evaluated in a model of hyperalgesia induced by G-CSF in mice. The mechanical hyperalgesia induced by G-CSF was reduced by treatment with rutin in a dose-dependent manner. Treatment with both rutin + morphine or rutin + indomethacin, at doses that are ineffectual per se, significantly reduced the pain caused by G-CSF. The nitric oxide (NO)-cyclic guanosine monophosphate (cGMP)-protein kinase G (PKG)-ATP-sensitive potassium channel (KATP) signaling pathway activation is one of the analgesic mechanisms of rutin. Rutin also reduced the pro-hyperalgesic and increased anti-hyperalgesic cytokine production induced by G-CSF. Furthermore, rutin inhibited the activation of the nuclear factor kappa-light-chain enhancer of activated B cells (NFκB), which might explain the inhibition of the cytokine production. Treatment with rutin upregulated the decreased mRNA expression of the nuclear factor (erythroid-derived 2)-like 2 (Nrf2) combined with enhancement of the mRNA expression of the Nrf2 downstream target heme oxygenase (HO-1). Intraperitoneal (i.p.) treatment with rutin did not alter the mobilization of neutrophils induced by G-CSF. The analgesia by rutin can be explained by: NO-cGMP-PKG-KATP channel signaling activation, inhibition of NFκB and triggering the Nrf2/HO-1 pathway. The present study demonstrates rutin as a promising pharmacological approach to treat the pain induced by G-CSF without impairing its primary therapeutic benefit of mobilizing hematopoietic progenitor cells into the blood.


Asunto(s)
Analgésicos/farmacología , Factor Estimulante de Colonias de Granulocitos/farmacología , Dolor/tratamiento farmacológico , Rutina/farmacología , Animales , GMP Cíclico/fisiología , Proteínas Quinasas Dependientes de GMP Cíclico/fisiología , Citocinas/biosíntesis , Hemo-Oxigenasa 1/fisiología , Hiperalgesia/tratamiento farmacológico , Canales KATP/fisiología , Masculino , Ratones , Factor 2 Relacionado con NF-E2/fisiología , FN-kappa B/antagonistas & inhibidores , Neutrófilos/efectos de los fármacos , Óxido Nítrico/fisiología , Dolor/inducido químicamente , Transducción de Señal/efectos de los fármacos
5.
Inflammopharmacology ; 27(6): 1229-1242, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30612217

RESUMEN

BACKGROUND: Naringenin is a biologically active analgesic, anti-inflammatory, and antioxidant flavonoid. Naringenin targets in inflammation-induced articular pain remain poorly explored. METHODS: The present study investigated the cellular and molecular mechanisms involved in the analgesic/anti-inflammatory effects of naringenin in zymosan-induced arthritis. Mice were pre-treated orally with naringenin (16.7-150 mg/kg), followed by intra-articular injection of zymosan. Articular mechanical hyperalgesia and oedema, leucocyte recruitment to synovial cavity, histopathology, expression/production of pro- and anti-inflammatory mediators and NFκB activation, inflammasome component expression, and oxidative stress were evaluated. RESULTS: Naringenin inhibited articular pain and oedema in a dose-dependent manner. The dose of 50 mg/kg inhibited leucocyte recruitment, histopathological alterations, NFκB activation, and NFκB-dependent pro-inflammatory cytokines (TNF-α, IL-1ß, and IL-33), and preproET-1 mRNA expression, but increased anti-inflammatory IL-10. Naringenin also inhibited inflammasome upregulation (reduced Nlrp3, ASC, caspase-1, and pro-IL-1ß mRNA expression) and oxidative stress (reduced gp91phox mRNA expression and superoxide anion production, increased GSH levels, induced Nrf2 protein in CD45+ hematopoietic recruited cells, and induced Nrf2 and HO-1 mRNA expression). CONCLUSIONS: Naringenin presents analgesic and anti-inflammatory effects in zymosan-induced arthritis by targeting its main physiopathological mechanisms. These data highlight this flavonoid as an interesting therapeutic compound to treat joint inflammation, deserving additional pre-clinical and clinical studies.


Asunto(s)
Artritis/tratamiento farmacológico , Flavanonas/uso terapéutico , Antígenos Comunes de Leucocito/análisis , Factor 2 Relacionado con NF-E2/fisiología , Zimosan/farmacología , Animales , Citocinas/biosíntesis , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Flavanonas/farmacología , Células Madre Hematopoyéticas/metabolismo , Inflamasomas/efectos de los fármacos , Articulación de la Rodilla/patología , Masculino , Ratones , Factor 2 Relacionado con NF-E2/genética , FN-kappa B/fisiología , Estrés Oxidativo/efectos de los fármacos , Transducción de Señal
6.
Inflammopharmacology ; 2017 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-28508104

RESUMEN

We investigated the anti-inflammatory and analgesic effects of quercetin in monosodium urate crystals (MSU)-induced gout arthritis, and the sensitivity of quercetin effects to naloxone, an opioid receptor antagonist. Mice were treated with quercetin, and mechanical hyperalgesia was assessed at 1-24 h after MSU injection. In vivo, leukocyte recruitment, cytokine levels, oxidative stress, NFκB activation, and gp91phox and inflammasome components (NLRP3, ASC, Pro-caspase-1, and Pro-IL-1ß) mRNA expression by qPCR were determined in the knee joints at 24 h after MSU injection. Inflammasome activation was determined, in vitro, in lipopolysaccharide-primed macrophages challenged with MSU. Quercetin inhibited MSU-induced mechanical hyperalgesia, leukocyte recruitment, TNFα and IL-1ß production, superoxide anion production, inflammasome activation, decrease of antioxidants levels, NFκB activation, and inflammasome components mRNA expression. Naloxone pre-treatment prevented all the inhibitory effects of quercetin over MSU-induced gout arthritis. These results demonstrate that quercetin exerts analgesic and anti-inflammatory effect in the MSU-induced arthritis in a naloxone-sensitive manner.

7.
Environ Microbiol ; 18(8): 2677-88, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27322548

RESUMEN

Herbaspirillum seropedicae is a nitrogen-fixing ß-proteobacterium that associates with roots of gramineous plants. In silico analyses revealed that H. seropedicae genome has genes encoding a putative respiratory (NAR) and an assimilatory nitrate reductase (NAS). To date, little is known about nitrate metabolism in H. seropedicae, and, as this bacterium cannot respire nitrate, the function of NAR remains unknown. This study aimed to investigate the function of NAR in H. seropedicae and how it metabolizes nitrate in a low aerated-condition. RNA-seq transcriptional profiling in the presence of nitrate allowed us to pinpoint genes important for nitrate metabolism in H. seropedicae, including nitrate transporters and regulatory proteins. Additionally, both RNA-seq data and physiological characterization of a mutant in the catalytic subunit of NAR (narG mutant) showed that NAR is not required for nitrate assimilation but is required for: (i) production of high levels of nitrite, (ii) production of NO and (iii) dissipation of redox power, which in turn lead to an increase in carbon consumption. In addition, wheat plants showed an increase in shoot dry weight only when inoculated with H. seropedicae wild type, but not with the narG mutant, suggesting that NAR is important to H. seropedicae-wheat interaction.


Asunto(s)
Herbaspirillum/enzimología , Herbaspirillum/metabolismo , Nitrato-Reductasa/metabolismo , Nitratos/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Herbaspirillum/genética , Nitrato-Reductasa/genética , Raíces de Plantas/microbiología , ARN/metabolismo , Factores de Transcripción/metabolismo , Triticum/microbiología
8.
BMC Genomics ; 15: 378, 2014 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-24886190

RESUMEN

BACKGROUND: The rapid growth of the world's population demands an increase in food production that no longer can be reached by increasing amounts of nitrogenous fertilizers. Plant growth promoting bacteria (PGPB) might be an alternative to increase nitrogenous use efficiency (NUE) in important crops such wheat. Azospirillum brasilense is one of the most promising PGPB and wheat roots colonized by A. brasilense is a good model to investigate the molecular basis of plant-PGPB interaction including improvement in plant-NUE promoted by PGPB. RESULTS: We performed a dual RNA-Seq transcriptional profiling of wheat roots colonized by A. brasilense strain FP2. cDNA libraries from biological replicates of colonized and non-inoculated wheat roots were sequenced and mapped to wheat and A. brasilense reference sequences. The unmapped reads were assembled de novo. Overall, we identified 23,215 wheat expressed ESTs and 702 A. brasilense expressed transcripts. Bacterial colonization caused changes in the expression of 776 wheat ESTs belonging to various functional categories, ranging from transport activity to biological regulation as well as defense mechanism, production of phytohormones and phytochemicals. In addition, genes encoding proteins related to bacterial chemotaxi, biofilm formation and nitrogen fixation were highly expressed in the sub-set of A. brasilense expressed genes. CONCLUSIONS: PGPB colonization enhanced the expression of plant genes related to nutrient up-take, nitrogen assimilation, DNA replication and regulation of cell division, which is consistent with a higher proportion of colonized root cells in the S-phase. Our data support the use of PGPB as an alternative to improve nutrient acquisition in important crops such as wheat, enhancing plant productivity and sustainability.


Asunto(s)
Azospirillum brasilense/genética , Triticum/genética , Azospirillum brasilense/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Etiquetas de Secuencia Expresada , Biblioteca de Genes , MicroARNs/metabolismo , Nitrógeno/metabolismo , Fijación del Nitrógeno/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/microbiología , ARN/química , ARN/metabolismo , Análisis de Secuencia de ARN , Simbiosis/genética , Transcripción Genética , Transcriptoma , Triticum/crecimiento & desarrollo , Regulación hacia Arriba
9.
Nat Prod Res ; 36(23): 6081-6084, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35227131

RESUMEN

Pimenta pseudocaryophyllus (Gomes) Landrum is a Brazilian native plant. The mechanisms by which it promotes analgesia are unknown. We demonstrated the analgesic effect of P. pseudocaryophyllus dried extract (3 mg/kg; i.p.) in the following models of inflammatory pain (maximal inhibition): phenyl-p-benzoquinone (89%), formalin (72% - 1st phase and 96% - 2nd phase for flinches, and 50% - 1st phase and 71% - 2nd phase for licking behavior), complete Freund's adjuvant (95% - flinches and 33% - licking behavior), and carrageenin (56% - mechanical and 85% - thermal hyperalgesia) without motor impairment. Its analgesic effect depends on inhibiting neutrophil recruitment (95% - histopathology, 83% - myeloperoxidase activity, and 80% - LysM-eGFP mice), oxidative stress (86% - GSH and 98% - superoxide anion), and cytokine production (35% - IL-33, 80% - TNF-α, and 95% - IL-1ß). The present study advances in understanding the analgesic mechanisms of P. pseudocaryophyllus.


Asunto(s)
Pimenta , Ratones , Animales , Infiltración Neutrófila , Dolor/tratamiento farmacológico , Estrés Oxidativo , Analgésicos/farmacología , Analgésicos/uso terapéutico , Hiperalgesia , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Inflamación/tratamiento farmacológico , Citocinas/metabolismo
10.
J Ethnopharmacol ; 283: 114708, 2022 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-34619320

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Sphagneticola trilobata (L.) Pruski is used in traditional medicine in Brazil for inflammatory diseases treatment including asthma. The diterpene kaurenoic acid (KA) is one of its active compounds, but whether KA activity could explain the traditional use of S. trilobata in asthma is unknown. AIM: Investigate KA effect and mechanisms in asthma. METHODS: Experimental asthma was induced by ovalbumin immunization and challenge in male Swiss mice. KA (0.1-10 mg/kg, gavage) was administered 1 h before the ovalbumin challenge. Total leukocytes, eosinophil, and mast cell were counted in bronchoalveolar lavage fluid (BALF), and lung histopathology was performed. Lung mRNA expression of Th2 and regulatory T cells markers, and BALF type 2 cytokine production were quantitated. NFκB activation and oxidative stress-related components in pulmonary tissue were measured. RESULTS: KA inhibited the migration of total leukocytes and eosinophils to BALF, reduced lung histopathology (inflammatory cells and mast cells), mRNA expression of IL-33/ST2, STAT6/GATA-3 and NFκB activation in the lung, and reduced IL-33, IL-4, IL-5 production in the BALF. KA also reduced the mRNA expression of iNOS and gp91phox, and superoxide anion production accompanied by the induction of Nrf2, HO-1 and NQO1 mRNA expression, thus, exerting an antioxidant effect. Finally, KA induced nTreg-like and Tr1-like, but not Th3-like markers of suppressive T cell phenotypes in the lung tissue. CONCLUSION: KA prevents antigen-induced asthma by down-regulating Th2 and NFκB/cytokine-related pathways, and up-regulating Nrf2 and regulatory T cells' markers. Thus, explaining the ethnopharmacological use of S. trilobata for the treatment of lung inflammatory diseases.


Asunto(s)
Asteraceae/química , Asma/tratamiento farmacológico , Citocinas/metabolismo , Diterpenos/farmacología , Animales , Modelos Animales de Enfermedad , Diterpenos/administración & dosificación , Diterpenos/aislamiento & purificación , Relación Dosis-Respuesta a Droga , Factor de Transcripción GATA3/metabolismo , Masculino , Ratones , Factor 2 Relacionado con NF-E2/metabolismo , FN-kappa B/metabolismo , Ovalbúmina/inmunología , Factor de Transcripción STAT6/metabolismo , Células Th2/inmunología
11.
Antioxidants (Basel) ; 11(7)2022 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-35883752

RESUMEN

Hesperidin is derived from citrus fruits among other plants. Hesperidin was methylated to increase its solubility, generating hesperidin methyl chalcone (HMC), an emerging flavonoid that possess anti-inflammatory and antioxidant properties. The nuclear factor erythroid 2-related factor 2 (Nrf2) is a powerful regulator of cellular resistance to oxidant products. Previous data evidenced HMC can activate Nrf2 signaling, providing antioxidant protection against diverse pathological conditions. However, its effects on kidney damage caused by non-steroidal anti-inflammatory drugs (NSAIDs) have not been evaluated so far. Mice received a nephrotoxic dose of diclofenac (200 mg/kg) orally followed by intra-peritoneal (i.p.) administration of HMC (0.03-3 mg/kg) or vehicle. Plasmatic levels of urea, creatinine, oxidative stress, and cytokines were assessed. Regarding the kidneys, oxidative parameters, cytokine production, kidney swelling, urine NGAL, histopathology, and Nrf2 mRNA expression and downstream targets were evaluated. HMC dose-dependently targeted diclofenac systemic alterations by decreasing urea and creatinine levels, and lipid peroxidation, as well as IL-6, IFN-γ, and IL-33 production, and restored antioxidant properties in plasma samples. In kidney samples, HMC re-established antioxidant defenses, inhibited lipid peroxidation and pro-inflammatory cytokines and upregulated IL-10, reduced kidney swelling, urine NGAL, and histopathological alterations. Additionally, HMC induced mRNA expression of Nrf2 and its downstream effectors HO-1 and Nqo1, as well as reduced the levels of Keap1 protein detected in renal tissue. The present data demonstrate HMC is a potential compound for the treatment of acute renal damage caused by diclofenac, a routinely prescribed non-steroidal anti-inflammatory drug.

12.
Front Pharmacol ; 13: 950314, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36703752

RESUMEN

In this study, we pursue determining the effect of pentoxifylline (Ptx) in delayed-onset muscle soreness (DOMS) triggered by exposing untrained mice to intense acute swimming exercise (120 min), which, to our knowledge, has not been investigated. Ptx treatment (1.5, 4.5, and 13.5 mg/kg; i.p., 30 min before and 12 h after the session) reduced intense acute swimming-induced mechanical hyperalgesia in a dose-dependent manner. The selected dose of Ptx (4.5 mg/kg) inhibited recruitment of neutrophils to the muscle tissue, oxidative stress, and both pro- and anti-inflammatory cytokine production in the soleus muscle and spinal cord. Furthermore, Ptx treatment also reduced spinal cord glial cell activation. In conclusion, Ptx reduces pain by targeting peripheral and spinal cord mechanisms of DOMS.

13.
Appl Microbiol Biotechnol ; 89(5): 1395-403, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21080163

RESUMEN

Rhamnolipid biosurfactants are attracting attention due to their low toxicity, high biodegradability, and good ecological acceptability. However, production in submerged culture is made difficult by severe foaming problems. Solid-state cultivation (SSC) is a promising alternative production method. In the current work, we report the optimization of rhamnolipid production by Pseudomonas aeruginosa UFPEDA 614 on a solid substrate containing sugarcane bagasse and corn bran. The best rhamnolipid production, 45 g/l of impregnating solution used, was obtained with a 50:50 (m/m) mixture of sugarcane bagasse and corn bran supplemented with an impregnating solution containing 6% (v/v) of each of glycerol and soybean oil. This level is comparable with those of previous studies undertaken in solid-state cultivation; the composition of the biosurfactant is similar, but our medium is cheaper. Our work therefore provides a suitable basis for future studies of the development of an SSC-based process for rhamnolipid production.


Asunto(s)
Celulosa/metabolismo , Glicerol/metabolismo , Glucolípidos/metabolismo , Pseudomonas aeruginosa/metabolismo , Aceite de Soja/metabolismo , Fibras de la Dieta , Fermentación , Saccharum , Zea mays
14.
J Ethnopharmacol ; 273: 113980, 2021 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-33652112

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Sphagneticola trilobata (L.) Pruski is a plant species belonging to the Asteraceae family. Kaurenoid acid (KA) is a diterpene metabolite and one of the active ingredients of Sphagneticola trilobata (L.) Pruski. Extracts containing KA are used in traditional medicine to treat pain, inflammation, and infection. AIM: The goal of the present study was to investigate the in vivo effects of KA (1-10 mg/kg, per oral gavage) upon LPS inoculation in mice by intraperitoneal (i.p.) or intraplantar (i.pl.; subcutaneous plantar injection) routes at the dose of 200 ng (200 µL or 25 µL, respectively). METHODS: In LPS paw inflammation, mechanical and thermal hyperalgesia MPO activity and oxidative imbalance (TBARS, GSH, ABTS and FRAP assays) were evaluated. In LPS peritonitis we evaluated leukocyte migration, cytokine production, oxidative stress, and NF-κB activation. RESULTS: KA inhibited LPS-induced mechanical and thermal hyperalgesia, MPO activity and modulated redox status in the mice paw. Pre- and post-treatment with KA inhibited migration of neutrophils and monocytes in LPS peritonitis. KA inhibited the pro-inflammatory/hyperalgesic cytokine (e.g., TNF-α, IL-1ß and IL-33) production while enhanced anti-inflammatory/analgesic cytokine IL-10 in peritoneal cavity. In agreement with the effect of KA over pro-inflammatory cytokines it inhibited oxidative stress (total ROS, superoxide production and superoxide positive cells) and NF-κB activation during peritonitis. CONCLUSION: KA efficiently dampens LPS-induced peritonitis and hyperalgesia in vivo, suggesting it as a suitable candidate to control excessive inflammation and pain during gram-negative bacterial infections and bringing mechanistic explanation to the ethnopharmacological application of Sphagneticola trilobata (L.) Pruski in inflammation and infection.


Asunto(s)
Analgésicos/uso terapéutico , Asteraceae/química , Diterpenos/uso terapéutico , Lipopolisacáridos/toxicidad , Peritonitis/inducido químicamente , Analgésicos/química , Animales , Diterpenos/química , Regulación de la Expresión Génica/efectos de los fármacos , Hiperalgesia/tratamiento farmacológico , Peroxidación de Lípido , Masculino , Ratones , Estructura Molecular , FN-kappa B/genética , FN-kappa B/metabolismo , Dolor/tratamiento farmacológico , Peritonitis/tratamiento farmacológico , Peroxidasa/metabolismo
15.
Adv Exp Med Biol ; 672: 203-10, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20545284

RESUMEN

In recent years biosurfactants have attracted attention because of their low toxicity, biodegradability and ecological acceptability. However, their use is currently extremely limited due to their high cost in relation to that of chemical surfactants. Solid-state cultivation represents an alternative technology for biosurfactant production that can bring two important advantages: firstly, it allows the use of inexpensive substrates and, secondly, it avoids the problem of foaming that complicates submerged cultivation processes for biosurfactant production. In this chapter we show that, despite its potential, to date relatively little attention has been given to solid-state cultivation for biosurfactant production. We also note that this cultivation technique brings its own challenges, such as the selection of a bioreactor type that will allow adequate heat removal, of substrates with appropriate physico-chemical properties and of methods for monitoring of the cultivation process and recovering the biosurfactants from the fermented solid. With suitable efforts in research, solid-state cultivation can be used for large-scale production of biosurfactants.


Asunto(s)
Bacterias/metabolismo , Productos Biológicos/biosíntesis , Microbiología Industrial/métodos , Tensoactivos , Productos Biológicos/química , Reactores Biológicos , Medios de Cultivo
16.
Environ Sci Pollut Res Int ; 27(24): 30222-30231, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32451891

RESUMEN

Surfactants represent a billionaire market of amphiphilic molecules with worldwide applications in almost every branch of modern industry. The most common surfactants, available and currently used, are chemically produced. However, there is an urge to replace these chemical compounds with those obtained by mild and green technologies such as microbial biosurfactants produced by fermentative processes. Rhamnolipids are glycolipid biosurfactants that present highly effective surface-active properties and enormous market potential; nevertheless, their production costs remain not competitive. Here, we present a process of rhamnolipid production by static submerged cultivation using membranes of bacterial cellulose as substrate. The mixture of the rhamnolipid congeners was characterized showing effective surface-active properties and high amount of di-rhamnolipids (95.6%). Through this fermentative technology, 15.8 g/L of rhamnolipid was reach using a very simple and low-cost medium. The present process might decrease biosurfactant production cost, avoid foam formation, and finally make rhamnolipid production more viable.


Asunto(s)
Celulosa , Pseudomonas aeruginosa , Glucolípidos , Tensoactivos , Agua , Zea mays
17.
Inflammation ; 42(4): 1474-1490, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31011926

RESUMEN

The effect of the lipid-lowering agent probucol in inflammatory hyperalgesia and leukocyte recruitment was evaluated in a model of subacute inflammation by Complete Freund's adjuvant (CFA). As CFA induces long-lasting nociception characterized by peripheral and spinal cord inflammation, the anti-inflammatory activity of probucol was assessed at both foci. Probucol at 0.3-3 mg/kg was administrated per oral daily starting 24 h after CFA intraplantar injection. Mechanical and thermal hyperalgesia induced by CFA were determined using an electronic anesthesiometer and hot plate apparatus, respectively. Post-treatment with probucol at 3 mg/kg inhibited CFA-induced hyperalgesia over the course of 7 days as well as paw edema. Overt pain-like behaviors, which were determined by the number of flinches and time spent licking paw immediately following CFA injection, were also reduced by probucol at 3 mg/kg administered as a pre-treatment. To investigate the mechanisms underlying the analgesic effect of probucol, neutrophil recruitment to paw was assessed by myeloperoxidase activity, cytokine production, Cox-2 expression, and NF-κB activation in both paw and spinal cord by ELISA. Iba-1, GFAP, and substance P protein expression and nuclear localization of phosphorylated NF-κB were evaluated in the spinal cord by immunofluorescence. Probucol at 3 mg/kg attenuated neutrophil recruitment, cytokine levels, and NF-κB activation as well microglia and astrocyte activation, and substance P staining in the spinal cord. Taken together, the results suggest that probucol exerts its analgesic and anti-inflammatory activity in an experimental model of persistent inflammation by targeting the NF-κB pathway in peripheral and spinal cord foci.


Asunto(s)
Adyuvante de Freund/efectos adversos , Hiperalgesia/tratamiento farmacológico , Inflamación/tratamiento farmacológico , Mielitis/tratamiento farmacológico , Probucol/farmacología , Animales , Antiinflamatorios/farmacología , Antioxidantes/farmacología , Ratones , FN-kappa B/antagonistas & inhibidores , Ratas
18.
Sci Rep ; 9(1): 3062, 2019 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-30816324

RESUMEN

Acute exposure to UVB irradiation causes skin inflammation and oxidative stress, and long-term exposure to UVB irradiation may lead to carcinogenesis. Our organism has endogenous mechanisms to actively limit inflammation. Maresin 1 (MaR1; 7R,14S-dihydroxy-docosa-4Z,8E,10E,12Z,16Z,19Z-hexaenoic acid) is a pro-resolution lipid mediator derived from the docosahexaenoic acid, which presents anti-inflammatory and pro-resolution effects. However, it remains to be determined if treatment with MaR1 can inhibit inflammatory and oxidative alterations in the skin triggered by UVB. The treatment with MaR1 (0.1-10 ng/mice at -10 min relative to the UVB irradiation protocol) reduced UVB-induced skin edema, neutrophil recruitment (MPO; myeloperoxidase activity, and migration of LysM-eGFP+ cells), cytokine production, matrix metalloproteinase-9 activity, keratinocyte apoptosis, epidermal thickening, mast cells counts and degradation of skin collagen in hairless mice. UVB irradiation caused a decrease of GSH (reduced glutathione) levels, activity of the enzyme catalase, ferric reducing ability (FRAP), and ABTS radical scavenging capacity as well as induced lipid hydroperoxide, superoxide anion production, and gp91phox mRNA expression. These parameters that indicate oxidative stress were inhibited by MaR1 treatment. Therefore, these data suggest MaR1 as a promising pharmacological tool in controlling the deleterious effects related to UVB irradiation.


Asunto(s)
Antiinflamatorios/uso terapéutico , Antioxidantes/uso terapéutico , Ácidos Docosahexaenoicos/uso terapéutico , Inflamación/prevención & control , Estrés Oxidativo/efectos de los fármacos , Rayos Ultravioleta/efectos adversos , Animales , Ratones , Ratones Pelados , Ratones Endogámicos C57BL , Estrés Oxidativo/efectos de la radiación , Piel/efectos de los fármacos , Piel/efectos de la radiación
19.
Sci Rep ; 9(1): 10573, 2019 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-31332206

RESUMEN

Rice is staple food of nearly half the world's population. Rice yields must therefore increase to feed ever larger populations. By colonising rice and other plants, Herbaspirillum spp. stimulate plant growth and productivity. However the molecular factors involved are largely unknown. To further explore this interaction, the transcription profiles of Nipponbare rice roots inoculated with Herbaspirillum seropedicae were determined by RNA-seq. Mapping the 104 million reads against the Oryza sativa cv. Nipponbare genome produced 65 million unique mapped reads that represented 13,840 transcripts each with at least two-times coverage. About 7.4% (1,014) genes were differentially regulated and of these 255 changed expression levels more than two times. Several of the repressed genes encoded proteins related to plant defence (e.g. a putative probenazole inducible protein), plant disease resistance as well as enzymes involved in flavonoid and isoprenoid synthesis. Genes related to the synthesis and efflux of phytosiderophores (PS) and transport of PS-iron complexes were induced by the bacteria. These data suggest that the bacterium represses the rice defence system while concomitantly activating iron uptake. Transcripts of H. seropedicae were also detected amongst which transcripts of genes involved in nitrogen fixation, cell motility and cell wall synthesis were the most expressed.


Asunto(s)
Genes de Plantas , Herbaspirillum/metabolismo , Hierro/metabolismo , Oryza/microbiología , Raíces de Plantas/microbiología , Resistencia a la Enfermedad/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/genética , Homeostasis , Oryza/genética , Oryza/metabolismo , Raíces de Plantas/metabolismo
20.
Appl Microbiol Biotechnol ; 81(3): 441-8, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18766338

RESUMEN

In recent years, biosurfactants have attracted attention because of their low toxicity, high biodegradability, and good ecological acceptability. However, their production in submerged liquid culture is hampered by the severe foaming that occurs. Solid-state cultivation can avoid this problem. In the current work, we optimized the production of a rhamnolipid biosurfactant by Pseudomonas aeruginosa UFPEDA 614, grown on a solid medium impregnated with a solution containing glycerol. During the study, we increased the production of the biosurfactant over tenfold, with levels reaching 172 g of rhamnolipid per kilogram of dry initial substrate after 12 days. On the basis of the volume of impregnating solution added to the solid support, this yield is of the order of 46 g/L, which is comparable with the best results that have been obtained to date in submerged liquid cultivation. Our results suggest that there is a great potential for using solid-state cultivation for the production of rhamnolipids.


Asunto(s)
Reactores Biológicos/microbiología , Técnicas de Cultivo/métodos , Glucolípidos/metabolismo , Microbiología Industrial , Pseudomonas aeruginosa/metabolismo , Tensoactivos/metabolismo , Técnicas Bacteriológicas/métodos , Glucolípidos/aislamiento & purificación , Tensoactivos/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA