Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 582(7810): 84-88, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32483374

RESUMEN

Data analysis workflows in many scientific domains have become increasingly complex and flexible. Here we assess the effect of this flexibility on the results of functional magnetic resonance imaging by asking 70 independent teams to analyse the same dataset, testing the same 9 ex-ante hypotheses1. The flexibility of analytical approaches is exemplified by the fact that no two teams chose identical workflows to analyse the data. This flexibility resulted in sizeable variation in the results of hypothesis tests, even for teams whose statistical maps were highly correlated at intermediate stages of the analysis pipeline. Variation in reported results was related to several aspects of analysis methodology. Notably, a meta-analytical approach that aggregated information across teams yielded a significant consensus in activated regions. Furthermore, prediction markets of researchers in the field revealed an overestimation of the likelihood of significant findings, even by researchers with direct knowledge of the dataset2-5. Our findings show that analytical flexibility can have substantial effects on scientific conclusions, and identify factors that may be related to variability in the analysis of functional magnetic resonance imaging. The results emphasize the importance of validating and sharing complex analysis workflows, and demonstrate the need for performing and reporting multiple analyses of the same data. Potential approaches that could be used to mitigate issues related to analytical variability are discussed.


Asunto(s)
Análisis de Datos , Ciencia de los Datos/métodos , Ciencia de los Datos/normas , Conjuntos de Datos como Asunto , Neuroimagen Funcional , Imagen por Resonancia Magnética , Investigadores/organización & administración , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Conjuntos de Datos como Asunto/estadística & datos numéricos , Femenino , Humanos , Modelos Logísticos , Masculino , Metaanálisis como Asunto , Modelos Neurológicos , Reproducibilidad de los Resultados , Investigadores/normas , Programas Informáticos
2.
Proc Natl Acad Sci U S A ; 118(43)2021 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-34663732

RESUMEN

Numerous studies have sought proof of whether people are genuinely honest by testing whether cognitive control mechanisms are recruited during honest and dishonest behaviors. The underlying assumption is: Deliberate behaviors require cognitive control to inhibit intuitive responses. However, cognitive control during honest and dishonest behaviors can be required for other reasons than deliberation. Across 58 neuroimaging studies (1,211 subjects), we investigated different forms of honest and dishonest behaviors and demonstrated that many brain regions previously implicated in dishonesty may reflect more general cognitive mechanisms. We argue that the motivational/volitional dimension is central to deliberation and provide evidence that motivated dishonest behaviors recruit the perigenual anterior cingulate cortex. This work questions the view that cognitive control is a hallmark of dishonesty.


Asunto(s)
Conducta , Decepción , Mapeo Encefálico , Humanos , Imagen por Resonancia Magnética
3.
J Cogn Neurosci ; 33(9): 1716-1752, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32762523

RESUMEN

Healthy aging is associated with changes in cognitive performance, including executive functions (EFs) and their associated brain activation patterns. However, it has remained unclear which EF-related brain regions are affected consistently, because the results of pertinent neuroimaging studies and earlier meta-analyses vary considerably. We, therefore, conducted new rigorous meta-analyses of published age differences in EF-related brain activity. Out of a larger set of regions associated with EFs, only left inferior frontal junction and left anterior cuneus/precuneus were found to show consistent age differences. To further characterize these two age-sensitive regions, we performed seed-based resting-state functional connectivity (RS-FC) analyses using fMRI data from a large adult sample with a wide age range. We also assessed associations of the two regions' whole-brain RS-FC patterns with age and EF performance. Although our results largely point toward a domain-general role of left inferior frontal junction in EFs, the pattern of individual study contributions to the meta-analytic results suggests process-specific modulations by age. Our analyses further indicate that the left anterior cuneus/precuneus is recruited differently by older (compared with younger) adults during EF tasks, potentially reflecting inefficiencies in switching the attentional focus. Overall, our findings question earlier meta-analytic results and suggest a larger heterogeneity of age-related differences in brain activity associated with EFs. Hence, they encourage future research that pays greater attention to replicability, investigates age-related differences in deactivation, and focuses on more narrowly defined EF subprocesses, combining multiple behavioral assessments with multimodal imaging.


Asunto(s)
Encéfalo , Función Ejecutiva , Adulto , Encéfalo/diagnóstico por imagen , Mapeo Encefálico , Humanos , Imagen por Resonancia Magnética , Lóbulo Parietal
4.
Neuroimage ; 245: 118731, 2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34788662

RESUMEN

Numerous neuroimaging studies have investigated the neural mechanisms of two mutually independent yet closely related cognitive processes aiding humans to navigate complex societies: social hierarchy-related learning (SH-RL) and social hierarchy-related interaction (SH-RI). To integrate these heterogeneous results into a more fine-grained and reliable characterization of the neural basis of social hierarchy, we combined coordinate-based meta-analyses with connectivity and functional decoding analyses to understand the underlying neuropsychological mechanism of SH-RL and SH-RI. We identified the anterior insula and temporoparietal junction (dominance detection), medial prefrontal cortex (information updating and computation), and intraparietal sulcus region, amygdala, and hippocampus (social hierarchy representation) as consistent activated brain regions for SH-RL, but the striatum, amygdala, and hippocampus associated with reward processing for SH-RI. Our results provide an overview of the neural architecture of the neuropsychological processes underlying how we understand, and interact within, social hierarchy.


Asunto(s)
Mapeo Encefálico/métodos , Neuroimagen Funcional , Jerarquia Social , Aprendizaje/fisiología , Humanos , Modelos Neurológicos , Modelos Psicológicos , Refuerzo en Psicología
5.
Neuroimage ; 236: 118109, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-33940147

RESUMEN

Risk and ambiguity are inherent in virtually all human decision-making. Risk refers to a situation in which we know the precise probability of potential outcomes of each option, whereas ambiguity refers to a situation in which outcome probabilities are not known. A large body of research has shown that individuals prefer known risks to ambiguity, a phenomenon known as ambiguity aversion. One heated debate concerns whether risky and ambiguous decisions rely on the same or distinct neural circuits. In the current meta-analyses, we integrated the results of neuroimaging research on decision-making under risk (n = 69) and ambiguity (n = 31). Our results showed that both processing of risk and ambiguity showed convergence in anterior insula, indicating a key role of anterior insula in encoding uncertainty. Risk additionally engaged dorsomedial prefrontal cortex (dmPFC) and ventral striatum, whereas ambiguity specifically recruited the dorsolateral prefrontal cortex (dlPFC), inferior parietal lobe (IPL) and right anterior insula. Our findings demonstrate overlapping and distinct neural substrates underlying different types of uncertainty, guiding future neuroimaging research on risk-taking and ambiguity aversion.


Asunto(s)
Corteza Cerebral/fisiología , Toma de Decisiones/fisiología , Neuroimagen , Recompensa , Asunción de Riesgos , Incertidumbre , Estriado Ventral/fisiología , Adolescente , Adulto , Corteza Cerebral/diagnóstico por imagen , Femenino , Humanos , Masculino , Estriado Ventral/diagnóstico por imagen , Adulto Joven
6.
Neuroimage ; 231: 117833, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33549749

RESUMEN

Neural networks involved in placebo analgesia and nocebo hyperalgesia processes have been widely investigated with neuroimaging methods. However, few studies have directly compared these two processes and it remains unclear whether common or distinct neural circuits are involved. To address this issue, we implemented a coordinate-based meta-analysis and compared neural representations of placebo analgesia (30 studies; 205 foci; 677 subjects) and nocebo hyperalgesia (22 studies; 301 foci; 401 subjects). Contrast analyses confirmed placebo-specific concordance in the right ventral striatum, and nocebo-specific concordance in the dorsal anterior cingulate cortex (dACC), left posterior insula and left parietal operculum during combined pain anticipation and administration stages. Importantly, no overlapping regions were found for these two processes in conjunction analyses, even when the threshold was low. Meta-analytic connectivity modeling (MACM) and resting-state functional connectivity (RSFC) analyses on key regions further confirmed the distinct brain networks underlying placebo analgesia and nocebo hyperalgesia. Together, these findings indicate that the placebo analgesia and nocebo hyperalgesia processes involve distinct neural circuits, which supports the view that the two phenomena may operate via different neuropsychological processes.


Asunto(s)
Analgesia/métodos , Encéfalo/diagnóstico por imagen , Hiperalgesia/diagnóstico por imagen , Red Nerviosa/diagnóstico por imagen , Dolor/diagnóstico por imagen , Encéfalo/fisiopatología , Mapeo Encefálico/métodos , Humanos , Hiperalgesia/fisiopatología , Hiperalgesia/terapia , Imagen por Resonancia Magnética/métodos , Red Nerviosa/fisiopatología , Efecto Nocebo , Dolor/fisiopatología , Efecto Placebo , Tomografía de Emisión de Positrones/métodos
7.
Mov Disord ; 36(5): 1180-1190, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33427336

RESUMEN

BACKGROUND: Motor-related brain activity in Parkinson's disease has been investigated in a multitude of functional neuroimaging studies, which often yielded apparently conflicting results. Our previous meta-analysis did not resolve inconsistencies regarding cortical activation differences in Parkinson's disease, which might be related to the limited number of studies that could be included. Therefore, we conducted a revised meta-analysis including a larger number of studies. The objectives of this study were to elucidate brain areas that consistently show abnormal motor-related activation in Parkinson's disease and to reveal their functional connectivity profiles using meta-analytic approaches. METHODS: We applied a quantitative meta-analysis of functional neuroimaging studies testing limb movements in Parkinson's disease comprising data from 39 studies, of which 15 studies (285 of 571 individual patients) were published after the previous meta-analysis. We also conducted meta-analytic connectivity modeling to elucidate the connectivity profiles of areas showing abnormal activation. RESULTS: We found consistent motor-related underactivation of bilateral posterior putamen and cerebellum in Parkinson's disease. Primary motor cortex and the supplementary motor area also showed deficient activation, whereas cortical regions localized directly anterior to these areas expressed overactivation. Connectivity modeling revealed that areas showing decreased activation shared a common pathway through the posterior putamen, whereas areas showing increased activation were connected to the anterior putamen. CONCLUSIONS: Despite conflicting results in individual neuroimaging studies, this revised meta-analytic approach identified consistent patterns of abnormal motor-related activation in Parkinson's disease. The distinct patterns of decreased and increased activity might be determined by their connectivity with different subregions of the putamen. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Enfermedad de Parkinson , Encéfalo/diagnóstico por imagen , Neuroimagen Funcional , Humanos , Imagen por Resonancia Magnética , Vías Nerviosas/diagnóstico por imagen , Enfermedad de Parkinson/diagnóstico por imagen
8.
Neuroimage ; 220: 117067, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-32574809

RESUMEN

Local cortical architecture is highly heritable and distinct genes are associated with specific cortical regions. Total surface area has been shown to be genetically correlated with complex cognitive capacities, suggesting cortical brain structure is a viable endophenotype linking genes to behavior. However, to what extend local brain structure has a genetic association with cognitive and emotional functioning is incompletely understood. Here, we study the genetic correlation between personality traits and local cortical structure in a large-scale twin sample (Human Connectome Project, n â€‹= â€‹1102, 22-37y) and we evaluated whether observed associations reflect generalizable relationships between personality and local brain structure two independent age-matched samples (Brain Genomics Superstructure Project: n â€‹= â€‹925, age â€‹= â€‹19-35y, enhanced Nathan Kline Institute dataset: n â€‹= â€‹209, age: 19-39y). We found a genetic overlap between personality traits and local cortical structure in 10 of 18 observed phenotypic associations in predominantly frontal cortices. However, we only observed evidence in favor of replication for the negative association between surface area in medial prefrontal cortex and Neuroticism in both replication samples. Quantitative functional decoding indicated this region is implicated in emotional and socio-cognitive functional processes. In sum, our observations suggest that associations between local brain structure and personality are, in part, under genetic control. However, associations are weak and only the relation between frontal surface area and Neuroticism was consistently observed across three independent samples of young adults.


Asunto(s)
Corteza Cerebral/diagnóstico por imagen , Conectoma , Personalidad/genética , Adulto , Bases de Datos Factuales , Femenino , Humanos , Inteligencia/genética , Imagen por Resonancia Magnética , Masculino , Reproducibilidad de los Resultados , Adulto Joven
9.
Cereb Cortex ; 29(4): 1532-1546, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-29912435

RESUMEN

Previous studies helped unraveling the functional architecture of the human cerebral cortex. However, a comprehensive functional segregation of right lateral prefrontal cortex is missing. Here, we delineated cortical clusters in right area 44 and 45 based on their task-constrained whole-brain activation patterns across neuroimaging experiments obtained from a large database. We identified 5 clusters that differed with respect to their coactivation patterns, which were consistent with resting-state functional connectivity patterns of an independent dataset. Two clusters in the posterior inferior frontal gyrus (IFG) were functionally associated with action inhibition and execution, while two anterior clusters were related to reasoning and social cognitive processes. A fifth cluster was associated with spatial attention. Strikingly, the functional organization of the right IFG can thus be characterized by a posterior-to-anterior axis with action-related functions on the posterior and cognition-related functions on the anterior end. We observed further subdivisions along a dorsal-to-ventral axis in posterior IFG between action execution and inhibition, and in anterior IFG between reasoning and social cognition. The different clusters were integrated in distinct large-scale networks for various cognitive processes. These results provide evidence for a general organization of cognitive processes along axes spanning from more automatic to more complex cognitive processes.


Asunto(s)
Lateralidad Funcional/fisiología , Corteza Prefrontal/fisiología , Atención/fisiología , Encéfalo/fisiología , Mapeo Encefálico , Análisis por Conglomerados , Cognición/fisiología , Bases de Datos Factuales , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Vías Nerviosas/fisiología , Desempeño Psicomotor
10.
Sci Rep ; 14(1): 9431, 2024 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-38658576

RESUMEN

This work presents data from 148 German native speakers (20-55 years of age), who completed several speaking tasks, ranging from formal tests such as word production tests to more ecologically valid spontaneous tasks that were designed to mimic natural speech. This speech data is supplemented by performance measures on several standardised, computer-based executive functioning (EF) tests covering domains of working-memory, cognitive flexibility, inhibition, and attention. The speech and EF data are further complemented by a rich collection of demographic data that documents education level, family status, and physical and psychological well-being. Additionally, the dataset includes information of the participants' hormone levels (cortisol, progesterone, oestradiol, and testosterone) at the time of testing. This dataset is thus a carefully curated, expansive collection of data that spans over different EF domains and includes both formal speaking tests as well as spontaneous speaking tasks, supplemented by valuable phenotypical information. This will thus provide the unique opportunity to perform a variety of analyses in the context of speech, EF, and inter-individual differences, and to our knowledge is the first of its kind in the German language. We refer to this dataset as SpEx since it combines speech and executive functioning data. Researchers interested in conducting exploratory or hypothesis-driven analyses in the field of individual differences in language and executive functioning, are encouraged to request access to this resource. Applicants will then be provided with an encrypted version of the data which can be downloaded.


Asunto(s)
Función Ejecutiva , Habla , Humanos , Función Ejecutiva/fisiología , Adulto , Persona de Mediana Edad , Femenino , Masculino , Habla/fisiología , Alemania , Adulto Joven , Lenguaje , Memoria a Corto Plazo/fisiología , Pruebas Neuropsicológicas
11.
Front Hum Neurosci ; 17: 1087026, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37448625

RESUMEN

The human frontal operculum (FOp) is a brain region that covers parts of the ventral frontal cortex next to the insula. Functional imaging studies showed activations in this region in tasks related to language, somatosensory, and cognitive functions. While the precise cytoarchitectonic areas that correlate to these processes have not yet been revealed, earlier receptorarchitectonic analysis resulted in a detailed parcellation of the FOp. We complemented this analysis by a cytoarchitectonic study of a sample of ten postmortem brains and mapped the posterior FOp in serial, cell-body stained histological sections using image analysis and multivariate statistics. Three new areas were identified: Op5 represents the most posterior area, followed by Op6 and the most anterior region Op7. Areas Op5-Op7 approach the insula, up to the circular sulcus. Area 44 of Broca's region, the most ventral part of premotor area 6, and parts of the parietal operculum are dorso-laterally adjacent to Op5-Op7. The areas did not show any interhemispheric or sex differences. Three-dimensional probability maps and a maximum probability map were generated in stereotaxic space, and then used, in a first proof-of-concept-study, for functional decoding and analysis of structural and functional connectivity. Functional decoding revealed different profiles of cytoarchitectonically identified Op5-Op7. While left Op6 was active in music cognition, right Op5 was involved in chewing/swallowing and sexual processing. Both areas showed activation during the exercise of isometric force in muscles. An involvement in the coordination of flexion/extension could be shown for the right Op6. Meta-analytic connectivity modeling revealed various functional connections of the FOp areas within motor and somatosensory networks, with the most evident connection with the music/language network for Op6 left. The new cytoarchitectonic maps are part of Julich-Brain, and publicly available to serve as a basis for future analyses of structural-functional relationships in this region.

12.
medRxiv ; 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-38076878

RESUMEN

Background: Neuroimaging studies have provided valuable insights into the macroscale impacts of antidepressants on brain functions in patients with major depressive disorder. However, the findings of individual studies are inconsistent. Here, we aimed to provide a quantitative synthesis of the literature to identify convergence of the reported findings at both regional and network levels and to examine their associations with neurotransmitter systems. Methods: Through a comprehensive search in PubMed and Scopus databases, we reviewed 5,258 abstracts and identified 37 eligible functional neuroimaging studies on antidepressant effects in major depressive disorder. Activation likelihood estimation was used to investigate regional convergence of the reported foci of consistent antidepressant effects, followed by functional decoding and connectivity mapping of the convergent clusters. Additionally, utilizing group-averaged data from the Human Connectome Project, we assessed convergent resting-state functional connectivity patterns of the reported foci. Next, we compared the convergent circuit with the circuits targeted by transcranial magnetic stimulation (TMS) therapy. Last, we studied the association of regional and network-level convergence maps with the selected neurotransmitter receptors/transporters maps. Results: We found regional convergence of the reported treatment-associated increases of functional measures in the left dorsolateral prefrontal cortex, which was associated with working memory and attention behavioral domains. No regional convergence was found across foci of alterations in functional imaging associated with antidepressants. Moreover, we found network-level convergence of functional alterations in a circuit that was prominent in the frontoparietal and salience networks. This circuit was co-aligned with a circuit targeted by anti-subgenual TMS therapy. We observed no significant correlations between our meta-analytic findings with the maps of neurotransmitter receptors/transporters. Conclusion: Our findings highlight the importance of the left dorsolateral prefrontal cortex, as well as frontoparietal network and the salience network in the therapeutic effects of anti-depressants, possibly associated with their role in improving executive functions and emotional processing.

13.
Sleep Med Rev ; 71: 101821, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37481961

RESUMEN

The neurobiological underpinnings of insomnia disorder (ID) are still poorly understood. A previous meta-analysis conducted by our research group in 2018 revealed no consistent regional alterations based on the limited number of eligible studies. Given the number of studies published during the last few years, we revisited the meta-analysis to provide an update to the field. Following the best-practice guidelines for conducting neuroimaging meta-analyses, we searched several databases (PubMed, Web of Science, and BrainMap) and identified 39 eligible structural and functional studies, reporting coordinates reflecting significant group differences between ID patients and healthy controls. A significant convergent regional alteration in the subgenual anterior cingulate cortex (sgACC) was observed using the activation likelihood estimation algorithm. Behavioural decoding using the BrainMap database indicated that this region is involved in fear-related emotional and cognitive processing. The sgACC showed robust task-based co-activation in meta-analytic connectivity modelling and task-free functional connectivity in a resting-state functional connectivity analysis with the main hubs of the salience and default mode networks, including the posterior cingulate cortex and dorsal ACC, amygdala, hippocampus, and medial prefrontal cortex. Collectively, the findings from this large-scale meta-analysis suggest a critical role of the sgACC in the pathophysiology of ID.


Asunto(s)
Giro del Cíngulo , Trastornos del Inicio y del Mantenimiento del Sueño , Humanos , Giro del Cíngulo/diagnóstico por imagen , Trastornos del Inicio y del Mantenimiento del Sueño/diagnóstico por imagen , Imagen por Resonancia Magnética , Emociones , Neuroimagen , Encéfalo
14.
Commun Biol ; 5(1): 138, 2022 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-35177755

RESUMEN

Diffusion-weighted neuroimaging approaches provide rich evidence for estimating the structural integrity of white matter in vivo, but typically do not assess white matter integrity for connections between two specific regions of the brain. Here, we present a method for deriving tract-specific diffusion statistics, based upon predefined regions of interest. Our approach derives a population distribution using probabilistic tractography, based on the Nathan Kline Institute (NKI) Enhanced Rockland sample. We determine the most likely geometry of a path between two regions and express this as a spatial distribution. We then estimate the average orientation of streamlines traversing this path, at discrete distances along its trajectory, and the fraction of diffusion directed along this orientation for each participant. The resulting participant-wise metrics (tract-specific anisotropy; TSA) can then be used for statistical analysis on any comparable population. Based on this method, we report both negative and positive associations between age and TSA for two networks derived from published meta-analytic studies (the "default mode" and "what-where" networks), along with more moderate sex differences and age-by-sex interactions. The proposed method can be applied to any arbitrary set of brain regions, to estimate both the spatial trajectory and DWI-based anisotropy specific to those regions.


Asunto(s)
Mapeo Encefálico/métodos , Interpretación Estadística de Datos , Imagen de Difusión Tensora/métodos , Red Nerviosa , Animales , Femenino , Humanos , Masculino
15.
Brain Struct Funct ; 227(2): 425-440, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34882263

RESUMEN

Hemispheric asymmetries, i.e., differences between the two halves of the brain, have extensively been studied with respect to both structure and function. Commonly employed pairwise comparisons between left and right are suitable for finding differences between the hemispheres, but they come with several caveats when assessing multiple asymmetries. What is more, they are not designed for identifying the characterizing features of each hemisphere. Here, we present a novel data-driven framework-based on machine learning-based classification-for identifying the characterizing features that underlie hemispheric differences. Using voxel-based morphometry data from two different samples (n = 226, n = 216), we separated the hemispheres along the midline and used two different pipelines: First, for investigating global differences, we embedded the hemispheres into a two-dimensional space and applied a classifier to assess if the hemispheres are distinguishable in their low-dimensional representation. Second, to investigate which voxels show systematic hemispheric differences, we employed two classification approaches promoting feature selection in high dimensions. The two hemispheres were accurately classifiable in both their low-dimensional (accuracies: dataset 1 = 0.838; dataset 2 = 0.850) and high-dimensional (accuracies: dataset 1 = 0.966; dataset 2 = 0.959) representations. In low dimensions, classification of the right hemisphere showed higher precision (dataset 1 = 0.862; dataset 2 = 0.894) compared to the left hemisphere (dataset 1 = 0.818; dataset 2 = 0.816). A feature selection algorithm in the high-dimensional analysis identified voxels that most contribute to accurate classification. In addition, the map of contributing voxels showed a better overlap with moderate to highly lateralized voxels, whereas conventional t test with threshold-free cluster enhancement best resembled the LQ map at lower thresholds. Both the low- and high-dimensional classifiers were capable of identifying the hemispheres in subsamples of the datasets, such as males, females, right-handed, or non-right-handed participants. Our study indicates that hemisphere classification is capable of identifying the hemisphere in their low- and high-dimensional representation as well as delineating brain asymmetries. The concept of hemisphere classifiability thus allows a change in perspective, from asking what differs between the hemispheres towards focusing on the features needed to identify the left and right hemispheres. Taking this perspective on hemispheric differences may contribute to our understanding of what makes each hemisphere special.


Asunto(s)
Lateralidad Funcional , Imagen por Resonancia Magnética , Encéfalo/diagnóstico por imagen , Mapeo Encefálico , Femenino , Mano , Humanos , Masculino
16.
Clin Psychol Rev ; 96: 102189, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35908312

RESUMEN

Motivational dysfunction constitutes one of the fundamental dimensions of psychopathology cutting across traditional diagnostic boundaries. However, it is unclear whether there is a common neural circuit responsible for motivational dysfunction across neuropsychiatric conditions. To address this issue, the current study combined a meta-analysis on psychiatric neuroimaging studies of reward/loss anticipation and consumption (4308 foci, 438 contrasts, 129 publications) with a lesion network mapping approach (105 lesion cases). Our meta-analysis identified transdiagnostic hypoactivation in the ventral striatum (VS) for clinical/at-risk conditions compared to controls during the anticipation of both reward and loss. Moreover, the VS subserves a key node in a distributed brain network which encompasses heterogeneous lesion locations causing motivation-related symptoms. These findings do not only provide the first meta-analytic evidence of shared neural alternations linked to anticipatory motivation-related deficits, but also shed novel light on the role of VS dysfunction in motivational impairments in terms of both network integration and psychological functions. Particularly, the current findings suggest that motivational dysfunction across neuropsychiatric conditions is rooted in disruptions of a common brain network anchored in the VS, which contributes to motivational salience processing rather than encoding positive incentive values.


Asunto(s)
Mapeo Encefálico , Motivación , Anticipación Psicológica/fisiología , Humanos , Imagen por Resonancia Magnética/métodos , Recompensa
17.
Alzheimers Dement (Amst) ; 14(1): e12318, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35664889

RESUMEN

Introduction: Numerous studies have reported brain alterations in behavioral variant frontotemporal dementia (bvFTD). However, they pointed to inconsistent findings. Methods: We used a meta-analytic approach to identify the convergent structural and functional brain abnormalities in bvFTD. Following current best-practice neuroimaging meta-analysis guidelines, we searched PubMed and Embase databases and performed reference tracking. Then, the coordinates of group comparisons between bvFTD and controls from 73 studies were extracted and tested for convergence using activation likelihood estimation. Results: We identified convergent abnormalities in the anterior cingulate cortices, anterior insula, amygdala, paracingulate, striatum, and hippocampus. Task-based and resting-state functional connectivity pointed to the networks that are connected to the obtained consistent regions. Functional decoding analyses suggested associated dysfunction of emotional processing, interoception, reward processing, higher-order cognitive functions, and olfactory and gustatory perceptions in bvFTD. Discussion: Our findings highlighted the key role of the salience network and subcortical regions in the pathophysiology of bvFTD.

18.
J Abnorm Psychol ; 130(6): 627-640, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34553958

RESUMEN

Voxel-based morphometry (VBM) studies of gray matter volume (GMV) in psychopathy have produced inconsistent results and few have been replicated. Therefore, to clarify GMV abnormalities associated with psychopathy as operationalized by Hare (2003), we conducted a meta-analysis of VBM studies using both categorical and dimensional analyses. We identified seven studies eligible for the categorical meta-analysis (136 men with psychopathy vs 150 male controls) and 11 studies (N = 519) eligible for dimensional metaregressions. First, we used seed-based d mapping with permutation of subject images for voxel-based meta-analyses. Statistical parametric maps of GMV were available for four (57%) of the studies included in the categorical meta-analysis and for five (45%) of the studies included in the dimensional metaregression analyses, with peak coordinates available for the remaining studies. Second, we used metadata of a large-scale neuroimaging database to provide an objective and quantitative account of psychological processes attributed to the brain regions we identified in our group meta-analysis and metaregressions. Men with psychopathy exhibited reliable GMV abnormalities circumscribed to the left hemisphere in the dorsolateral prefrontal cortex and the medial orbitofrontal cortex. Total psychopathy scores and Factors 1 and 2 scores were all related to decreased GMV within those two prefrontal regions, as well as decreased GMV in a wider set of regions encompassing midline, temporal, parietal, occipital, and subcortical structures. We discuss how decreased GMV in those regions likely account for the impairments in the emotion, cognition, action, and perception domains seen in the disorder. (PsycInfo Database Record (c) 2021 APA, all rights reserved).


Asunto(s)
Sustancia Gris , Imagen por Resonancia Magnética , Encéfalo , Corteza Cerebral , Sustancia Gris/diagnóstico por imagen , Humanos , Masculino , Neuroimagen
19.
Sci Rep ; 11(1): 6929, 2021 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-33767208

RESUMEN

Semantic verbal fluency (sVF) tasks are commonly used in clinical diagnostic batteries as well as in a research context. When performing sVF tasks to assess executive functions (EFs) the sum of correctly produced words is the main measure. Although previous research indicates potentially better insights into EF performance by the use of finer grained sVF information, this has not yet been objectively evaluated. To investigate the potential of employing a finer grained sVF feature set to predict EF performance, healthy monolingual German speaking participants (n = 230) were tested with a comprehensive EF test battery and sVF tasks, from which features including sum scores, error types, speech breaks and semantic relatedness were extracted. A machine learning method was applied to predict EF scores from sVF features in previously unseen subjects. To investigate the predictive power of the advanced sVF feature set, we compared it to the commonly used sum score analysis. Results revealed that 8 / 14 EF tests were predicted significantly using the comprehensive sVF feature set, which outperformed sum scores particularly in predicting cognitive flexibility and inhibitory processes. These findings highlight the predictive potential of a comprehensive evaluation of sVF tasks which might be used as diagnostic screening of EFs.


Asunto(s)
Función Ejecutiva , Conducta Verbal , Adulto , Femenino , Voluntarios Sanos , Humanos , Aprendizaje Automático , Masculino , Persona de Mediana Edad , Semántica , Adulto Joven
20.
Neurosci Biobehav Rev ; 126: 289-303, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33781834

RESUMEN

Recent overarching frameworks propose that various human social interactions are commonly supported by a set of fundamental neuropsychological processes, including social cognition, motivation, and cognitive control. However, it remains unclear whether brain networks implicated in these functional constructs are consistently engaged in diverse social interactions. Based on ample evidence from human brain imaging studies (342 contrasts, 7234 participants, 3328 foci), we quantitatively synthesized brain areas involved in broad domains of social interactions, including social interactions versus non-social contexts, positive/negative aspects of social interactions, social learning, and social norms. We then conducted brain network analysis on the ensuing brain regions and characterized the psychological function profiles of identified brain networks. Our findings revealed that brain regions consistently involved in diverse social interactions mapped onto default mode network, salience network, subcortical network and central executive network, which were respectively implicated in social cognition, motivation and cognitive control. These findings implicate a heuristic integrative framework to understand human social life from the perspective of component process and network integration.


Asunto(s)
Mapeo Encefálico , Imagen por Resonancia Magnética , Encéfalo/diagnóstico por imagen , Cognición , Humanos , Red Nerviosa , Neuroimagen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA