Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
BMC Plant Biol ; 24(1): 238, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38566027

RESUMEN

BACKGROUND: The fruity aromatic bouquet of coffee has attracted recent interest to differentiate high value market produce as specialty coffee. Although the volatile compounds present in green and roasted coffee beans have been extensively described, no study has yet linked varietal molecular differences to the greater abundance of specific substances and support the aroma specificity of specialty coffees. RESULTS: This study compared four Arabica genotypes including one, Geisha Especial, suggested to generate specialty coffee. Formal sensory evaluations of coffee beverages stressed the importance of coffee genotype in aroma perception and that Geisha Especial-made coffee stood out by having fine fruity, and floral, aromas and a more balanced acidity. Comparative SPME-GC-MS analyses of green and roasted bean volatile compounds indicated that those of Geisha Especial differed by having greater amounts of limonene and 3-methylbutanoic acid in agreement with the coffee cup aroma perception. A search for gene ontology differences of ripening beans transcriptomes of the four varieties revealed that they differed by metabolic processes linked to terpene biosynthesis due to the greater gene expression of prenyl-pyrophosphate biosynthetic genes and terpene synthases. Only one terpene synthase (CaTPS10-like) had an expression pattern that paralleled limonene loss during the final stage of berry ripening and limonene content in the studied four varieties beans. Its functional expression in tobacco leaves confirmed its functioning as a limonene synthase. CONCLUSIONS: Taken together, these data indicate that coffee variety genotypic specificities may influence ripe berry chemotype and final coffee aroma unicity. For the specialty coffee variety Geisha Especial, greater expression of terpene biosynthetic genes including CaTPS10-like, a limonene synthase, resulted in the greater abundance of limonene in green beans, roasted beans and a unique citrus note of the coffee drink.


Asunto(s)
Transferasas Alquil y Aril , Coffea , Liasas Intramoleculares , Odorantes , Coffea/genética , Limoneno , Terpenos , Semillas , Perfilación de la Expresión Génica
2.
BMC Genomics ; 24(1): 41, 2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36694132

RESUMEN

BACKGROUND: Somatic embryogenesis (SE) is one of the most promising processes for large-scale dissemination of elite varieties. However, for many plant species, optimizing SE protocols still relies on a trial and error approach. We report the first global scale transcriptome profiling performed at all developmental stages of SE in coffee to unravel the mechanisms that regulate cell fate and totipotency. RESULTS: RNA-seq of 48 samples (12 developmental stages × 4 biological replicates) generated 90 million high quality reads per sample, approximately 74% of which were uniquely mapped to the Arabica genome. First, the statistical analysis of transcript data clearly grouped SE developmental stages into seven important phases (Leaf, Dedifferentiation, Primary callus, Embryogenic callus, Embryogenic cell clusters, Redifferentiation and Embryo) enabling the identification of six key developmental phase switches, which are strategic for the overall biological efficiency of embryo regeneration. Differential gene expression and functional analysis showed that genes encoding transcription factors, stress-related genes, metabolism-related genes and hormone signaling-related genes were significantly enriched. Second, the standard environmental drivers used to control SE, i.e. light, growth regulators and cell density, were clearly perceived at the molecular level at different developmental stages. Third, expression profiles of auxin-related genes, transcription factor-related genes and secondary metabolism-related genes were analyzed during SE. Gene co-expression networks were also inferred. Auxin-related genes were upregulated during dedifferentiation and redifferentiation while transcription factor-related genes were switched on from the embryogenic callus and onward. Secondary metabolism-related genes were switched off during dedifferentiation and switched back on at the onset of redifferentiation. Secondary metabolites and endogenous IAA content were tightly linked with their respective gene expression. Lastly, comparing Arabica embryogenic and non-embryogenic cell transcriptomes enabled the identification of biological processes involved in the acquisition of embryogenic capacity. CONCLUSIONS: The present analysis showed that transcript fingerprints are discriminating signatures of cell fate and are under the direct influence of environmental drivers. A total of 23 molecular candidates were successfully identified overall the 12 developmental stages and can be tested in many plant species to optimize SE protocols in a rational way.


Asunto(s)
Coffea , Perfilación de la Expresión Génica , Transcriptoma , Ácidos Indolacéticos/metabolismo , Regeneración , Factores de Transcripción/metabolismo , Técnicas de Embriogénesis Somática de Plantas , Regulación de la Expresión Génica de las Plantas
3.
J Sci Food Agric ; 103(9): 4692-4703, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36905183

RESUMEN

BACKGROUND: The effects of the environment and genotype in the coffee bean chemical composition were studied using nine trials covering an altitudinal gradient [600-1100 m above sea level (a.s.l.)] with three genotypes of Coffea arabica in the northwest mountainous region of Vietnam. The impacts of the climatic conditions on bean physical characteristics and chemical composition were assessed. RESULTS: We showed that the environment had a significant effect on the bean density and on all bean chemical compounds. The environment effect was stronger than the genotype and genotype-environment interaction effects for cafestol, kahweol, arachidic (C20:0), behenic acid (C22:0), 2,3-butanediol, 2-methyl-2-buten-1-ol, benzaldehyde, benzene ethanol, butyrolactone, decane, dodecane, ethanol, pentanoic acid, and phenylacetaldehyde bean content. A 2 °C increase in temperature had more influence on bean chemical compounds than a 100 mm increase in soil water content. Temperature was positively correlated with lipids and volatile compounds. With an innovative method using iterative moving averages, we showed that correlation of temperature, vapour pressure deficit (VPD) and rainfall with lipids and volatiles was higher between the 10th and 20th weeks after flowering highlighting this period as crucial for the synthesis of these chemicals. Genotype specific responses were evidenced and could be considered in future breeding programmes to maintain coffee beverage quality in the midst of climate change. CONCLUSION: This first study of the effect of the genotype-environment interactions on chemical compounds enhances our understanding of the sensitivity of coffee quality to genotype environment interactions during bean development. This work addresses the growing concern of the effect of climate change on speciality crops and more specifically coffee. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Asunto(s)
Coffea , Interacción Gen-Ambiente , Coffea/química , Fitomejoramiento , Semillas/química , Lípidos/análisis
4.
Int J Mol Sci ; 20(3)2019 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-30744144

RESUMEN

In a context where climate change is threatening coffee productivity, the management of coffee leaf rust is a challenging issue. Major resistant genes, which have been used for many years, are systematically being overcome by pathogens. Developing healthy plants, able to defend themselves and be productive even when attacked by the pathogen, should be part of a more sustainable alternative approach. We compared one hybrid (GPFA124), selected for its good health in various environments including a reduced rust incidence, and the cv. 'Caturra', considered as a standard in terms of productivity and quality but highly susceptible to rust, for phenotypic variables and for the expression of genes involved in the circadian clock and in primary photosynthetic metabolism. The GPFA124 hybrid showed increased photosynthetic electron transport efficiency, better carbon partitioning, and higher chlorophyll content. A strong relationship exists between chlorophyll a fluorescence and the expression of genes related to the photosynthetic electron transport chain. We also showed an alteration of the amplitude of circadian clock genes in the clone. Our work also indicated that increased photosynthetic electron transport efficiency is related to the clone's better performance. Chlorophyll a fluorescence measurement is a good indicator of the coffee tree's physiological status for the breeder. We suggest a connection between the circadian clock and carbon metabolism in coffee tree.


Asunto(s)
Relojes Circadianos , Coffea/fisiología , Fotosíntesis , Carbono , Clorofila/metabolismo , Relojes Circadianos/genética , Transporte de Electrón , Perfilación de la Expresión Génica , Vigor Híbrido/genética , Endogamia , Redes y Vías Metabólicas , Modelos Biológicos , Fotosíntesis/genética , Fitomejoramiento , Transcriptoma
5.
Int J Mol Sci ; 20(19)2019 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-31547069

RESUMEN

Somatic embryogenesis (SE) is one of the most promising processes for large-scale dissemination of elite varieties. However, for many plant species, optimizing SE protocols still relies on a trial-and-error approach. Using coffee as a model plant, we report here the first global analysis of metabolome and hormone dynamics aiming to unravel mechanisms regulating cell fate and totipotency. Sampling from leaf explant dedifferentiation until embryo development covered 15 key stages. An in-depth statistical analysis performed on 104 metabolites revealed that massive re-configuration of metabolic pathways induced SE. During initial dedifferentiation, a sharp decrease in phenolic compounds and caffeine levels was also observed while auxins, cytokinins and ethylene levels were at their highest. Totipotency reached its highest expression during the callus stages when a shut-off in hormonal and metabolic pathways related to sugar and energetic substance hydrolysis was evidenced. Abscisic acid, leucine, maltotriose, myo-inositol, proline, tricarboxylic acid cycle metabolites and zeatin appeared as key metabolic markers of the embryogenic capacity. Combining metabolomics with multiphoton microscopy led to the identification of chlorogenic acids as markers of embryo redifferentiation. The present analysis shows that metabolite fingerprints are signatures of cell fate and represent a starting point for optimizing SE protocols in a rational way.


Asunto(s)
Coffea/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Hojas de la Planta/metabolismo , Técnicas de Embriogénesis Somática de Plantas , Coffea/citología , Hojas de la Planta/citología
6.
Planta ; 236(1): 313-26, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22349733

RESUMEN

Phenylalanine ammonia lyase (PAL) is the first entry enzyme of the phenylpropanoid pathway producing phenolics, widespread constituents of plant foods and beverages, including chlorogenic acids, polyphenols found at remarkably high levels in the coffee bean and long recognized as powerful antioxidants. To date, whereas PAL is generally encoded by a small gene family, only one gene has been characterized in Coffea canephora (CcPAL1), an economically important species of cultivated coffee. In this study, a molecular- and bioinformatic-based search for CcPAL1 paralogues resulted successfully in identifying two additional genes, CcPAL2 and CcPAL3, presenting similar genomic structures and encoding proteins with close sequences. Genetic mapping helped position each gene in three different coffee linkage groups, CcPAL2 in particular, located in a coffee genome linkage group (F) which is syntenic to a region of Tomato Chromosome 9 containing a PAL gene. These results, combined with a phylogenetic study, strongly suggest that CcPAL2 may be the ancestral gene of C. canephora. A quantitative gene expression analysis was also conducted in coffee tissues, showing that all genes are transcriptionally active, but they present distinct expression levels and patterns. We discovered that CcPAL2 transcripts appeared predominantly in flower, fruit pericarp and vegetative/lignifying tissues like roots and branches, whereas CcPAL1 and CcPAL3 were highly expressed in immature fruit. This is the first comprehensive study dedicated to PAL gene family characterization in coffee, allowing us to advance functional studies which are indispensable to learning to decipher what role this family plays in channeling the metabolism of coffee phenylpropanoids.


Asunto(s)
Coffea/enzimología , Coffea/genética , Fenilanina Amoníaco-Liasa/genética , Fenilanina Amoníaco-Liasa/metabolismo , Proteínas de Plantas/metabolismo , Ácido Clorogénico/metabolismo , Mapeo Cromosómico , Flavonoides/metabolismo , Flores/genética , Frutas/genética , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Filogenia , Hojas de la Planta/genética , Raíces de Plantas/genética
7.
Ann Bot ; 110(3): 595-613, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22700941

RESUMEN

BACKGROUND AND AIMS: The phenolic composition of Coffea leaves has barely been studied, and therefore this study conducts the first detailed survey, focusing on mangiferin and hydroxycinnamic acid esters (HCEs). METHODS: Using HPLC, including a new technique allowing quantification of feruloylquinic acid together with mangiferin, and histochemical methods, mangiferin content and tissue localization were compared in leaves and fruits of C. pseudozanguebariae, C. arabica and C. canephora. The HCE and mangiferin content of leaves was evaluated for 23 species native to Africa or Madagascar. Using various statistical methods, data were assessed in relation to distribution, ecology, phylogeny and use. KEY RESULTS: Seven of the 23 species accumulated mangiferin in their leaves. Mangiferin leaf-accumulating species also contain mangiferin in the fruits, but only in the outer (sporophytic) parts. In both leaves and fruit, mangiferin accumulation decreases with ageing. A relationship between mangiferin accumulation and UV levels is posited, owing to localization with photosynthetic tissues, and systematic distribution in high altitude clades and species with high altitude representatives. Analyses of mangiferin and HCE content showed that there are significant differences between species, and that samples can be grouped into species, with few exceptions. These data also provide independent support for various Coffea lineages, as proposed by molecular phylogenetic analyses. Sampling of the hybrids C. arabica and C. heterocalyx cf. indicates that mangiferin and HCE accumulation may be under independent parental influence. CONCLUSIONS: This survey of the phenolic composition in Coffea leaves shows that mangiferin and HCE accumulation corresponds to lineage recognition and species delimitation, respectively. Knowledge of the spectrum of phenolic accumulation within species and populations could be of considerable significance for adaptation to specific environments. The potential health benefits of coffee-leaf tea, and beverages and masticatory products made from the fleshy parts of Coffea fruits, are supported by our phenolic quantification.


Asunto(s)
Coffea/química , Ácidos Cumáricos/análisis , Frutas/química , Hidroxibenzoatos/análisis , Hojas de la Planta/química , Xantonas/análisis , África , Coffea/clasificación , Ésteres , Variación Genética , Madagascar , Filogenia , Especificidad de la Especie
8.
BMC Genomics ; 12: 5, 2011 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-21208403

RESUMEN

BACKGROUND: Understanding the genetic elements that contribute to key aspects of coffee biology will have an impact on future agronomical improvements for this economically important tree. During the past years, EST collections were generated in Coffee, opening the possibility to create new tools for functional genomics. RESULTS: The "PUCE CAFE" Project, organized by the scientific consortium NESTLE/IRD/CIRAD, has developed an oligo-based microarray using 15,721 unigenes derived from published coffee EST sequences mostly obtained from different stages of fruit development and leaves in Coffea Canephora (Robusta). Hybridizations for two independent experiments served to compare global gene expression profiles in three types of tissue matter (mature beans, leaves and flowers) in C. canephora as well as in the leaves of three different coffee species (C. canephora, C. eugenoides and C. arabica). Microarray construction, statistical analyses and validation by Q-PCR analysis are presented in this study. CONCLUSION: We have generated the first 15 K coffee array during this PUCE CAFE project, granted by Génoplante (the French consortium for plant genomics). This new tool will help study functional genomics in a wide range of experiments on various plant tissues, such as analyzing bean maturation or resistance to pathogens or drought. Furthermore, the use of this array has proven to be valid in different coffee species (diploid or tetraploid), drastically enlarging its impact for high-throughput gene expression in the community of coffee research.


Asunto(s)
Agricultura/métodos , Café/genética , Genómica/métodos , Etiquetas de Secuencia Expresada , Perfilación de la Expresión Génica , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena de la Polimerasa
9.
Tree Physiol ; 41(2): 302-316, 2021 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-33080620

RESUMEN

Photoperiod length induces in temperate plants major changes in growth rates, morphology and metabolism with, for example, modifications in the partitioning of photosynthates to avoid starvation at the end of long nights. However, this has never been studied for a tropical perennial species adapted to grow in a natural photoperiod close to 12 h/12 h all year long. We grew Coffea arabica L., an understorey perennial evergreen tropical species in its natural 12 h/12 h and in a short 8 h/16 h photoperiod, and we investigated its responses at the physiological, metabolic and transcriptomic levels. The expression pattern of rhythmic genes, including core clock genes, was affected by changes in photoperiod. Overall, we identified 2859 rhythmic genes, of which 89% were also rhythmic in Arabidopsis thaliana L. Under short-days, plant growth was reduced, and leaves were thinner with lower chlorophyll content. In addition, secondary metabolism was also affected with chlorogenic acid and epicatechin levels decreasing, and in agreement, the genes involved in lignin synthesis were overexpressed and those involved in the flavanol pathway were underexpressed. Our results show that the 8 h/16 h photoperiod induces drastic changes in morphology, metabolites and gene expression, and the responses for gene expression are similar to those observed in the temperate annual A. thaliana species. Short photoperiod induces drastic changes in gene expression, metabolites and leaf structure, some of these responses being similar to those observed in A. thaliana.


Asunto(s)
Coffea , Fotoperiodo , Coffea/genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas/genética , Redes y Vías Metabólicas/genética
10.
Metabolites ; 10(10)2020 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-32993190

RESUMEN

Phenolic compounds are involved in plant response to environmental conditions and are highly present in leaves of Coffea arabica L., originally an understory shrub. To increase knowledge of C. arabica leaf phenolic compounds and their patterns in adaptation to light intensity, mature leaves of Ethiopian wild accessions, American pure lines and their relative F1 hybrids were sampled in full sun or under 50% shade field plots in Mexico and at two contrasting elevations in Nicaragua and Colombia. Twenty-one phenolic compounds were identified by LC-DAD-MS2 and sixteen were quantified by HPLC-DAD. Four of them appeared to be involved in C. arabica response to light intensity. They were consistently more accumulated in full sun, presenting a stable ratio of leaf content in the sun vs. shade for all the studied genotypes: 1.6 for 5-CQA, F-dihex and mangiferin and 2.8 for rutin. Moreover, 5-CQA and mangiferin contents, in full sun and shade, allowed for differentiating the two genetic groups of Ethiopian wild accessions (higher contents) vs. cultivated American pure lines. They appear, therefore, to be potential biomarkers of adaptation of C. arabica to light intensity for breeding programs. We hypothesize that low 5-CQA and mangiferin leaf contents should be searched for adaptation to full-sun cropping systems and high contents used for agroforestry systems.

11.
BMC Plant Biol ; 9: 123, 2009 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-19788737

RESUMEN

BACKGROUND: In the past few years, functional genomics information has been rapidly accumulating on Rubiaceae species and especially on those belonging to the Coffea genus (coffee trees). An increasing number of expressed sequence tag (EST) data and EST- or genomic-derived microsatellite markers have been generated, together with Conserved Ortholog Set (COS) markers. This considerably facilitates comparative genomics or map-based genetic studies through the common use of orthologous loci across different species. Similar genomic information is available for e.g. tomato or potato, members of the Solanaceae family. Since both Rubiaceae and Solanaceae belong to the Euasterids I (lamiids) integration of information on genetic markers would be possible and lead to more efficient analyses and discovery of key loci involved in important traits such as fruit development, quality, and maturation, or adaptation. Our goal was to develop a comprehensive web data source for integrated information on validated orthologous markers in Rubiaceae. DESCRIPTION: MoccaDB is an online MySQL-PHP driven relational database that houses annotated and/or mapped microsatellite markers in Rubiaceae. In its current release, the database stores 638 markers that have been defined on 259 ESTs and 379 genomic sequences. Marker information was retrieved from 11 published works, and completed with original data on 132 microsatellite markers validated in our laboratory. DNA sequences were derived from three Coffea species/hybrids. Microsatellite markers were checked for similarity, in vitro tested for cross-amplification and diversity/polymorphism status in up to 38 Rubiaceae species belonging to the Cinchonoideae and Rubioideae subfamilies. Functional annotation was provided and some markers associated with described metabolic pathways were also integrated. Users can search the database for marker, sequence, map or diversity information through multi-option query forms. The retrieved data can be browsed and downloaded, along with protocols used, using a standard web browser. MoccaDB also integrates bioinformatics tools (CMap viewer and local BLAST) and hyperlinks to related external data sources (NCBI GenBank and PubMed, SOL Genomic Network database). CONCLUSION: We believe that MoccaDB will be extremely useful for all researchers working in the areas of comparative and functional genomics and molecular evolution, in general, and population analysis and association mapping of Rubiaceae and Solanaceae species, in particular.


Asunto(s)
Coffea/genética , Bases de Datos Genéticas , Genoma de Planta , Genómica/métodos , Biología Computacional , ADN de Plantas/genética , Etiquetas de Secuencia Expresada , Genes de Plantas , Internet , Repeticiones de Microsatélite , Polimorfismo Genético , Análisis de Secuencia de ADN , Interfaz Usuario-Computador
12.
BMC Plant Biol ; 9: 22, 2009 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-19243618

RESUMEN

BACKGROUND: Coffea canephora, also called Robusta, belongs to the Rubiaceae, the fourth largest angiosperm family. This diploid species (2x = 2n = 22) has a fairly small genome size of approximately 690 Mb and despite its extreme economic importance, particularly for developing countries, knowledge on the genome composition, structure and evolution remain very limited. Here, we report the 160 kb of the first C. canephora Bacterial Artificial Chromosome (BAC) clone ever sequenced and its fine analysis. RESULTS: This clone contains the CcEIN4 gene, encoding an ethylene receptor, and twenty other predicted genes showing a high gene density of one gene per 7.8 kb. Most of them display perfect matches with C. canephora expressed sequence tags or show transcriptional activities through PCR amplifications on cDNA libraries. Twenty-three transposable elements, mainly Class II transposon derivatives, were identified at this locus. Most of these Class II elements are Miniature Inverted-repeat Transposable Elements (MITE) known to be closely associated with plant genes. This BAC composition gives a pattern similar to those found in gene rich regions of Solanum lycopersicum and Medicago truncatula genomes indicating that the CcEIN4 regions may belong to a gene rich region in the C. canephora genome. Comparative sequence analysis indicated an extensive conservation between C. canephora and most of the reference dicotyledonous genomes studied in this work, such as tomato (S. lycopersicum), grapevine (V. vinifera), barrel medic M. truncatula, black cottonwood (Populus trichocarpa) and Arabidopsis thaliana. The higher degree of microcollinearity was found between C. canephora and V. vinifera, which belong respectively to the Asterids and Rosids, two clades that diverged more than 114 million years ago. CONCLUSION: This study provides a first glimpse of C. canephora genome composition and evolution. Our data revealed a remarkable conservation of the microcollinearity between C. canephora and V. vinifera and a high conservation with other distant dicotyledonous reference genomes. Altogether, these results provide valuable information to identify candidate genes in C. canephora genome and serve as a foundation to establish strategies for whole genome sequencing. Future large-scale sequence comparison between C. canephora and reference sequenced genomes will help in understanding the evolutionary history of dicotyledonous plants.


Asunto(s)
Coffea/genética , Genoma de Planta , Proteínas de Plantas/genética , Receptores de Superficie Celular/genética , Cromosomas Artificiales Bacterianos , Secuencia Conservada , ADN de Plantas/genética , Evolución Molecular , Biblioteca de Genes , Genes de Plantas , Datos de Secuencia Molecular , Mapeo Físico de Cromosoma , Alineación de Secuencia , Análisis de Secuencia de ADN , Vitis/genética
13.
Front Plant Sci ; 9: 1630, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30483287

RESUMEN

Since the 1990s, somatic embryogenesis (SE) has enabled the propagation of selected varieties, Arabica F1 hybrid and Robusta clones, originating from the two cultivated coffee species, Coffea arabica and Coffea canephora, respectively. This paper shows how mostly empirical research has led to successful industrial transfers launched in the 2000s in Latin America, Africa, and Asia. Coffee SE can be considered as a model for other woody perennial crops for the following reasons: (i) a high biological efficiency has been demonstrated for propagated varieties at all developmental stages, and (ii) somaclonal variation is understood and mastered thanks to intensive research combining molecular markers and field observations. Coffee SE is also a useful model given the strong economic constraints that are specific to this species. In brief, SE faced four difficulties: (i) the high cost of SE derived plants compared to the cost of seedlings of conventional varieties, (ii) the logistic problems involved in reaching small-scale coffee growers, (iii) the need for certification, and (iv) the lack of solvency among small-scale producers. Nursery activities were professionalized by introducing varietal certification, quality control with regard to horticultural problems and somaclonal variation, and sanitary control for Xylella fastidiosa. In addition, different technology transfers were made to ensure worldwide dissemination of improved F1 Arabica hybrids and Robusta clones. Innovations have been decisive for successful scaling-up and reduction of production costs, such as the development of temporary immersion bioreactors for the mass production of pre-germinated embryos, their direct sowing on horticultural soil, and the propagation of rejuvenated SE plants by rooted mini-cuttings. Today, SE is a powerful tool that is widely used in coffee for biotechnological applications including propagation and genetic transformation. Basic research has recently started taking advantage of optimized SE protocols. Based on -omics methodologies, research aims to decipher the molecular events involved in the key developmental switches of coffee SE. In parallel, a high-throughput screening of active molecules on SE appears to be a promising tool to speed-up the optimization of SE protocols.

14.
Front Plant Sci ; 8: 2025, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29234340

RESUMEN

Global warming is a major threat to agriculture worldwide. Between 2008 and 2013, some coffee producing countries in South and Central America suffered from severe epidemics of coffee leaf rust (CLR), resulting in high economic losses with social implications for coffee growers. The climatic events not only favored the development of the pathogen but also affected the physiological status of the coffee plant. The main objectives of the study were to evaluate how the physiological status of the coffee plant modified by different environmental conditions impact on the pathogenesis of CLR and to identify indicators of the physiological status able to predict rust incidence. Three rust susceptible genotypes (one inbred line and two hybrids) were grown in controlled conditions with a combination of thermal regime (TR), nitrogen and light intensity close to the field situation before being inoculated with the rust fungus Hemileia vastatrix. It has been demonstrated that a TR of 27-22°C resulted in 2000 times higher sporulation than with a TR of 23-18°C. It has been also shown that high light intensity combined with low nitrogen fertilization modified the CLR pathogenesis resulting in huge sporulation. CLR sporulation was significantly lower in the F1 hybrids than in the inbred line. The hybrid vigor may have reduced disease incidence. Among the many parameters studied, parameters related to photosystem II and photosynthetic electron transport chain components appeared as indicators of the physiological status of the coffee plant able to predict rust sporulation intensity. Taken together, these results show that CLR sporulation not only depends on the TR but also on the physiological status of the coffee plant, which itself depends on agronomic conditions. Our work suggests that vigorous varieties combined with a shaded system and appropriate nitrogen fertilization should be part of an agro-ecological approach to disease control.

15.
Front Plant Sci ; 8: 1126, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28769937

RESUMEN

The understorey origin of coffee trees and the strong plasticity of Coffea arabica leaves in relation to contrasting light environments have been largely shown. The adaptability of coffee leaves to changes in light was tested under controlled conditions by increasing the illumination rate on C. arabica var. Naryelis seedlings acclimated to low light conditions and observing leaf responses at three different developmental stages (juvenile, growing and mature). Only mature leaves proved capable of adapting to new light conditions. In these leaves, different major mechanisms were found to contribute to maintaining a good photosynthetic level. With increased illumination, a high photosynthetic response was conserved thanks to fast nitrogen remobilization, as indicated by SPAD values and the photorespiration rate. Efficient photoprotection was accompanied by a great ability to export sucrose, which prevented excessive inhibition of the Calvin cycle by hexose accumulation. In contrast, in younger leaves, increased illumination caused photodamage, observable even after 9 days of treatment. One major finding was that young coffee leaves rely on the accumulation of chlorogenic acids, powerful antioxidant phenolic compounds, to deal with the accumulation of reactive oxygen species rather than on antioxidant enzymes. Due to a lack of efficient photoprotection, a poor ability to export sucrose and inadequate antioxidant protection, younger leaves seemed to be unable to cope with increased illumination. In these leaves, an absence of induced antioxidant enzyme activity was accompanied, in growing leaves, by an absence of antioxidant synthesis or, in juvenile leaves, inefficient synthesis of flavonoids because located in some epidermis cells. These observations showed that coffee leaves, at the beginning of their development, are not equipped to withstand quick switches to higher light levels. Our results confirm that coffee trees, even selected for full sunlight conditions, remain shade plants possessing leaves able to adapt to higher light levels only when mature.

16.
New Phytol ; 147(3): 571-578, 2000 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33862944

RESUMEN

The activities of nitrate reductase and glutamine synthetase were evaluated in young plants of Faidherbia albida, a tropical woody legume, fed with different N sources under hydroponic conditions. Results showed that assimilation of both NO3 - and NH4 + preferentially took place in shoots. A basal amount of nitrate reductase activity was detected in shoots of plants grown with an NO3 - -free solution or placed under N2 -fixing conditions, and also in nodules of N2 -fixing plants. This strongly suggests that constitutive nitrate reductase activity is present in these organs. Analyses of the soluble nitrogenous content showed that the major form of N in the different organs was α-amino acids (particularly amides), irrespective of the N status of the culture conditions. The same result was obtained for nodulated plants grown in local sandy soil. In this case, amide-N generally accounted for more than 40% of the total soluble N. This was especially true in nodules. Ureide-N never exceeded 9% of the total soluble N and did not appear to increase with increasing nodule nitrogenase activity. Amides were also predominant in three N2 -fixing Sahelian acacias (Acacia seyal, A. nilotica and A. tortilis), showing that F. albida does not differ from Sahelian Acacia in terms of the metabolism of fixed N. However, like another Sahelian acacia growing preferentially near water (A. nilotica), F. albida can be distinguished from acacias growing strictly in arid zones (A. seyal and A. tortilis) in terms of initial growth, water and nitrate management.

17.
Science ; 345(6201): 1181-4, 2014 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-25190796

RESUMEN

Coffee is a valuable beverage crop due to its characteristic flavor, aroma, and the stimulating effects of caffeine. We generated a high-quality draft genome of the species Coffea canephora, which displays a conserved chromosomal gene order among asterid angiosperms. Although it shows no sign of the whole-genome triplication identified in Solanaceae species such as tomato, the genome includes several species-specific gene family expansions, among them N-methyltransferases (NMTs) involved in caffeine production, defense-related genes, and alkaloid and flavonoid enzymes involved in secondary compound synthesis. Comparative analyses of caffeine NMTs demonstrate that these genes expanded through sequential tandem duplications independently of genes from cacao and tea, suggesting that caffeine in eudicots is of polyphyletic origin.


Asunto(s)
Cafeína/genética , Coffea/genética , Evolución Molecular , Genoma de Planta , Metiltransferasas/fisiología , Proteínas de Plantas/fisiología , Cafeína/biosíntesis , Coffea/clasificación , Metiltransferasas/genética , Filogenia , Proteínas de Plantas/genética
18.
Mol Genet Genomics ; 277(6): 701-12, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17318584

RESUMEN

To understand the importance of ethylene receptor genes in the quality of coffee berries three full-length cDNAs corresponding to a putative ethylene receptor gene (ETR1) were isolated from Coffea canephora cDNA libraries. They differed by their 3'UTR and contained a main ORF and a 5'UTR short ORF putatively encoding a small polypeptide. The CcETR1 gene, present as a single copy in the C. canephora genome, contained five introns in the coding region and one in its 5'UTR. Alternative splicing can occur in C. canephora and C. pseudozanguebariae, leading to a truncated polypeptide. C. pseudozanguebariae ETR1 transcripts showed various forms of splicing alterations. This gene was equally expressed at all stages of fruit development. A segregation study on an inter-specific progeny showed that ETR1 is related to the fructification time, the caffeine content of the green beans, and seed weight. Arabidopsis transformed etiolated seedlings, which over-expressed CcETR1, displayed highly reduced gravitropism, but the triple response was observed in an ethylene enriched environment. These plants behaved like a low-concentration ethylene-insensitive mutant thus confirming the receptor function of the encoded protein. This gene showed no induction during the climacteric crisis but some linkage with traits related to quality.


Asunto(s)
Cafeína/análisis , Coffea/genética , Frutas/crecimiento & desarrollo , Proteínas de Plantas/genética , Receptores de Superficie Celular/genética , Empalme Alternativo , Arabidopsis/genética , Coffea/química , Coffea/crecimiento & desarrollo , ADN Complementario , Dosificación de Gen , Intrones , Datos de Secuencia Molecular , Fenotipo , Proteínas de Plantas/química , Polimorfismo Genético , Receptores de Superficie Celular/química , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
19.
Plant Mol Biol ; 64(1-2): 145-59, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17333503

RESUMEN

Chlorogenic acid (5-CQA) is one of the major soluble phenolic compounds that is accumulated in coffee green beans. With other hydroxycinnamoyl quinic acids (HQAs), this compound is accumulated in particular in green beans of the cultivated species Coffea canephora. Recent work has indicated that the biosynthesis of 5-CQA can be catalyzed by a cytochrome P450 enzyme, CYP98A3 from Arabidopsis. Two full-length cDNA clones (CYP98A35 and CYP98A36) that encode putative p-coumaroylester 3'-hydroxylases (C3'H) were isolated from C. canephora cDNA libraries. Recombinant protein expression in yeast showed that both metabolized p-coumaroyl shikimate at similar rates, but that only one hydroxylates the chlorogenic acid precursor p-coumaroyl quinate. CYP98A35 appears to be the first C3'H capable of metabolising p-coumaroyl quinate and p-coumaroyl shikimate with the same efficiency. We studied the expression patterns of both genes on 4-month old C. canephora plants and found higher transcript levels in young and in highly vascularized organs for both genes. Gene expression and HQA content seemed to be correlated in these organs. Histolocalization and immunolocalization studies revealed similar tissue localization for caffeoyl quinic acids and p-coumaroylester 3'-hydroxylases. The results indicated that HQA biosynthesis and accumulation occurred mainly in the shoot tip and in the phloem of the vascular bundles. The lack of correlation between gene expression and HQA content observed in some organs is discussed in terms of transport and accumulation mechanisms.


Asunto(s)
Ácido Clorogénico/metabolismo , Coffea/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Proteínas de Plantas/genética , Secuencia de Aminoácidos , Coffea/enzimología , Coffea/genética , Sistema Enzimático del Citocromo P-450/química , Sistema Enzimático del Citocromo P-450/metabolismo , Ésteres/metabolismo , Datos de Secuencia Molecular , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Ácido Quínico/análogos & derivados , Ácido Quínico/metabolismo , ARN Mensajero/metabolismo , Proteínas Recombinantes de Fusión/análisis , Proteínas Recombinantes de Fusión/metabolismo , Alineación de Secuencia
20.
Ann Bot ; 98(1): 33-40, 2006 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16675605

RESUMEN

BACKGROUND AND AIMS: Caffeoylquinic acids are cinnamate conjugates derived from the phenylpropanoid pathway. They are generally involved in plant responses to biotic and abiotic stress and one of them, chlorogenic acid (5-O-caffeoylquinic acid, 5-CQA), is an intermediate in the lignin biosynthesis pathway. Caffeoylquinic acids, and particularly 5-CQA, are accumulated in coffee beans, where they can form vacuolar complexes with caffeine. Coffea canephora beans are known to have high caffeoylquinic acid content, but little is known about the content and diversity of these compounds in other plant parts. To gain new insights into the caffeoylquinic acid metabolism of C. canephora, caffeoylquinic acid content and in situ localization were assessed in leaves at different growth stages. METHODS: HPLC analyses of caffeoylquinic acid content of leaves was conducted in conjunction with detailed histochemical and microspectrofluorometrical analysis. KEY RESULTS AND CONCLUSIONS: HPLC analyses revealed that caffeoylquinic acid content was 10-fold lower in adult than in juvenile leaves. The most abundant cinnamate conjugate was 5-CQA, but dicaffeoylquinic acids (particularly in juvenile leaves) and feruloylquinic acids were also present. Using specific reagents, histochemical and microspectrofluorometrical analysis showed that caffeoylquinic acids (mono- and di-esters) were closely associated with chloroplasts in very young leaves. During leaf ageing, they were found to first accumulate intensively in specific chlorenchymatous bundle sheath cells and then in phloem sclerenchyma cells. The association with chloroplasts suggests that caffeoylquinic acids have a protective role against light damage. In older tissues, their presence in the leaf vascular system indicates that they are transported via phloem and confirms their involvement in lignification processes. In accordance with the hypothesis of a complex formation with caffeine, similar tissue distribution was observed for alkaloids and this is further discussed.


Asunto(s)
Coffea/metabolismo , Ácido Quínico/análogos & derivados , Cloroplastos/metabolismo , Cromatografía Líquida de Alta Presión , Coffea/citología , Coffea/crecimiento & desarrollo , Hojas de la Planta/citología , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Ácido Quínico/análisis , Ácido Quínico/metabolismo , Espectrometría de Fluorescencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA