Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
1.
Nature ; 565(7739): 343-346, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30651612

RESUMEN

Recent advances in photoredox catalysis have made it possible to achieve various challenging synthetic transformations, polymerizations and surface modifications1-3. All of these reactions require ultraviolet- or visible-light stimuli; however, the use of visible-light irradiation has intrinsic challenges. For example, the penetration of visible light through most reaction media is very low, leading to problems in large-scale reactions. Moreover, reactants can compete with photocatalysts for the absorption of incident light, limiting the scope of the reactions. These problems can be overcome by the use of near-infrared light, which has a much higher penetration depth through various media, notably biological tissue4. Here we demonstrate various photoredox transformations under infrared radiation by utilizing the photophysical process of triplet fusion upconversion, a mechanism by which two low-energy photons are converted into a higher-energy photon. We show that this is a general strategy applicable to a wide range of photoredox reactions. We tune the upconversion components to adjust the output light, accessing both orange light and blue light from low-energy infrared light, by pairwise manipulation of the sensitizer and annihilator. We further demonstrate that the annihilator itself can be used as a photocatalyst, thus simplifying the reaction. This approach enables catalysis of high-energy transformations through several opaque barriers using low-energy infrared light.


Asunto(s)
Rayos Infrarrojos , Procesos Fotoquímicos/efectos de la radiación , Catálisis/efectos de la radiación , Color , Oxidación-Reducción/efectos de la radiación
2.
Nature ; 570(7759): E24, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31089213

RESUMEN

In Fig. 1c of this Letter, the orange axis label of the graph should have read 'FDPP upconversion photoluminescence (AU)' instead of 'TTBP upconversion photoluminescence (AU)'. This has been corrected online.

3.
Angew Chem Int Ed Engl ; 63(18): e202401281, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38462499

RESUMEN

Carbon dioxide (CO2) is an abundant C1 feedstock with tremendous potential to produce versatile building blocks in synthetic applications. Given the adverse impact of CO2 on the atmosphere, it is of paramount importance to devise strategies for upcycling it into useful materials, such as polymers and fine chemicals. To activate such stable molecule, superbases offer viable modes of binding to CO2. In this study, a superbase cyclopropenimine derivative was found to exhibit exceptional proficiency in activating CO2 and mediating its polymerization at ambient temperature and pressure for the synthesis of polyurethanes. The versatility of this reaction can be extended to monofunctional amines and alcohols, yielding a variety of functional carbonates and carbamates.

4.
J Am Chem Soc ; 145(40): 22058-22068, 2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37787467

RESUMEN

The evolution of molecular platforms for singlet fission (SF) chromophores has fueled the quest for new compounds capable of generating triplets quantitatively at fast time scales. As the exploration of molecular motifs for SF has diversified, a key challenge has emerged in identifying when the criteria for SF have been satisfied. Here, we show how covalently bound molecular dimers uniquely provide a set of characteristic optical markers that can be used to distinguish triplet pair formation from processes that generate an individual triplet. These markers are contained within (i) triplet charge-transfer excited state absorption features, (ii) kinetic signatures of triplet-triplet annihilation processes, and (iii) the modulation of triplet formation rates using bridging moieties between chromophores. Our assignments are verified by time-resolved electron paramagnetic resonance (EPR) measurements, which directly identify triplet pairs by their electron spin and polarization patterns. We apply these diagnostic criteria to dimers of acenothiophene derivatives in solution that were recently reported to undergo efficient intermolecular SF in condensed media. While the electronic structure of these heteroatom-containing chromophores can be broadly tuned, the effect of their enhanced spin-orbit coupling and low-energy nonbonding orbitals on their SF dynamics has not been fully determined. We find that SF is fast and efficient in tetracenothiophene but that anthradithiophene exhibits fast intersystem crossing due to modifications of the singlet and triplet excited state energies upon functionalization of the heterocycle. We conclude that it is not sufficient to assign SF based on comparisons of the triplet formation kinetics between monomer and multichromophore systems.

5.
J Am Chem Soc ; 145(28): 15275-15283, 2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37417583

RESUMEN

The quintet triplet-pair state may be generated upon singlet fission and is a critical intermediate that dictates the fate of excitons, which can be exploited for photovoltaics, information technologies, and biomedical imaging. In this report, we demonstrate that continuous-wave and pulsed electron spin resonance techniques such as phase-inverted echo-amplitude detected nutation (PEANUT), which have emerged as the primary tool for identifying the spin pathways in singlet fission, probe fundamentally different triplet-pair species. We directly observe that the generation rate of high-spin triplet pairs is dependent on the molecular orientation with respect to the static magnetic field. Moreover, we demonstrate that this observation can prevent incorrect analysis of continuous-wave electron spin resonance (cw-ESR) measurements and provide insight into the design of materials to target specific pathways that optimize exciton properties for specific applications.

6.
Nano Lett ; 22(14): 5773-5779, 2022 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-35849010

RESUMEN

We report transport measurements on tunable single-molecule junctions of the organic perchlorotrityl radical molecule, contacted with gold electrodes at low temperature. The current-voltage characteristics of a subset of junctions shows zero-bias anomalies due to the Kondo effect and in addition elevated magnetoresistance (MR). Junctions without Kondo resonance reveal a much stronger MR. Furthermore, we show that the amplitude of the MR can be tuned by mechanically stretching the junction. On the basis of these findings, we attribute the high MR to an interference effect involving spin-dependent scattering at the metal-molecule interface and assign the Kondo effect to the unpaired spin located in the center of the molecule in asymmetric junctions.

7.
J Am Chem Soc ; 144(7): 3269-3278, 2022 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-35166107

RESUMEN

Singlet fission (SF) is a mechanism of exciton multiplication in organic chromophores, which has potential to drive highly efficient optoelectronic devices. Creating effective device architectures that operate by SF critically depends on electronic interactions across multiple length scales─from individual molecules to interchromophore interactions that facilitate multiexciton dephasing and exciton diffusion toward donor-acceptor interfaces. Therefore, it is imperative to understand the underpinnings of multiexciton transport and interfacial energy transfer in multichromophore systems. Interestingly, block copolymers (BCPs) can be designed to control multiscale interactions by tailoring the nature of the building blocks, yet SF dynamics are not well understood in these macromolecules. Here, we designed diblock copolymers comprising an inherent energy cleft at the interface between a block with pendent pentacene chromophores and an additional block with pendent tetracene chromophores. The singlet and triplet energy offset between the two blocks creates a driving force for exciton transport along the BCP chain in dilute solution. Using time-resolved optical spectroscopy, we have quantified the yields of key energy transfer steps, including both singlet and triplet energy transfer processes across the pentacene-tetracene interface. From this modular BCP architecture, we correlate the energy transfer time scales and relative yields with the length of each block. The ability to quantify these energy transfer processes provides valuable insights into exciton transport at critical length scales between bulk crystalline systems and small-molecule dimers─an area that has been underexplored.

8.
J Phys Chem A ; 125(33): 7226-7234, 2021 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-34433272

RESUMEN

Molecular chirality can be exploited as a sensitive reporter of the nature of intra- and interchromophore interactions in π-conjugated systems. In this report, we designed an intramolecular singlet fission (iSF)-based pentacene dimer with an axially chiral binaphthyl bridge (2,2'-(2,2'-dimethoxy-[1,1'-binaphthalene]-3,3'-diyl) n-octyl-di-isopropyl silylethynyl dipentacene, BNBP) to utilize its chiroptical response as a marker of iSF chromophore-bridge-chromophore (SFC-ß-SFC) interactions. The axial chirality of the bridge enforces significant one-handed excitonic coupling of the pentacene monomer units; as such, BNBP exhibits significant chiroptical response in the ground and excited states. We analyzed the chiroptical response of BNBP using the exciton coupling method and quadratic response density functional theory calculations to reveal that higher energy singlet transitions in BNBP involve significant delocalization of the electronic density on the bridging binaphthyl group. Our results highlight the promising application of chiroptical techniques to investigate the nature of SFC-ß-SFC interactions that impact singlet fission dynamics.

9.
J Am Chem Soc ; 142(47): 19917-19925, 2020 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-33174728

RESUMEN

Triplet-triplet annihilation upconversion (TTA-UC) is an unconventional photophysical process that yields high-energy photons from low-energy incident light and offers pathways for innovation across many technologies, including solar energy harvesting, photochemistry, and optogenetics. Within aromatic organic chromophores, TTA-UC is achieved through several consecutive energy conversion events that ultimately fuse two triplet excitons into a singlet exciton. In chromophores where the singlet exciton is roughly isoergic with two triplet excitons, the limiting step is the triplet-triplet annihilation pathway, where the kinetics and yield depend sensitively on the energies of the lowest singlet and triplet excited states. Herein we report up to 40-fold improvements in upconversion quantum yields using molecular engineering to selectively tailor the relative energies of the lowest singlet and triplet excited states, enhancing the yield of triplet-triplet annihilation and promoting radiative decay of the resulting singlet exciton. Using this general and effective strategy, we obtain upconversion yields with red emission that are among the highest reported, with remarkable chemical stability under ambient conditions.

10.
Stat Appl Genet Mol Biol ; 18(3)2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-31042646

RESUMEN

Gene Regulatory Networks (GRNs) are known as the most adequate instrument to provide a clear insight and understanding of the cellular systems. One of the most successful techniques to reconstruct GRNs using gene expression data is Bayesian networks (BN) which have proven to be an ideal approach for heterogeneous data integration in the learning process. Nevertheless, the incorporation of prior knowledge has been achieved by using prior beliefs or by using networks as a starting point in the search process. In this work, the utilization of different kinds of structural restrictions within algorithms for learning BNs from gene expression data is considered. These restrictions will codify prior knowledge, in such a way that a BN should satisfy them. Therefore, one aim of this work is to make a detailed review on the use of prior knowledge and gene expression data to inferring GRNs from BNs, but the major purpose in this paper is to research whether the structural learning algorithms for BNs from expression data can achieve better outcomes exploiting this prior knowledge with the use of structural restrictions. In the experimental study, it is shown that this new way to incorporate prior knowledge leads us to achieve better reverse-engineered networks.


Asunto(s)
Biología Computacional/estadística & datos numéricos , Perfilación de la Expresión Génica/estadística & datos numéricos , Redes Reguladoras de Genes/genética , Algoritmos , Teorema de Bayes , Humanos , Modelos Genéticos
11.
J Phys Chem A ; 124(45): 9392-9399, 2020 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-33138366

RESUMEN

A major benefit of intramolecular singlet fission (iSF) materials, in which through-bond interactions mediate triplet pair formation, is the ability to control the triplet formation dynamics through molecular engineering. One common design strategy is the use of molecular bridges to mediate interchromophore interactions, decreasing electronic coupling by increasing chromophore-chromophore separation. Here, we report how the judicious choice of aromatic bridges can enhance chromophore-chromophore electronic coupling. This molecular engineering strategy takes advantage of "bridge resonance", in which the frontier orbital energies are nearly degenerate with those of the covalently linked singlet fission chromophores, resulting in fast iSF even at large interchromophore separations. Using transient absorption spectroscopy, we investigate this bridge resonance effect in a series of pentacene and tetracene-bridged dimers, and we find that the rate of triplet formation is enhanced as the bridge orbitals approach resonance. This work highlights the important role of molecular connectivity in controlling the rate of iSF through chemical bonds and establishes critical design principles for future use of iSF materials in optoelectronic devices.

12.
Bioorg Chem ; 102: 104069, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32683179

RESUMEN

Cationic molecules are found in abundance as antimicrobial agents with a well-defined mechanism of action and significant therapeutic benefits. Quaternary ammonium-containing compounds are frequently employed due to their facile synthesis and tunable properties. Over time, however, bacterial resistance to these compounds has become a significant obstacle. We report here a series of asymmetric trisalkylamine cyclopropenium cationic derivatives as chemical isosteres of quaternary ammonium compounds, capable of strong antimicrobial activity and overcoming microbial resistance. These small molecules were prepared by one-pot reaction of tetrachlorocyclopropene (TCC) with unhindered secondary amines in the presence of Hünig's base. In this work we describe the synthesis, purification, and characterization of five trisamino-cyclopropenium derivatives and confirm their structures by spectral analysis and mass-spectrometry. Three of the compounds displayed considerable antimalarial activity (IC50 < 0.1 µM) without demonstrating significant toxic effects in vitro (TC50 > 1 µM). This class of cyclopropenium-based compounds provides an opening for the discovery of potent and non-toxic antimicrobial agents.


Asunto(s)
Aminas/farmacología , Antiinfecciosos/farmacología , Ciclopropanos/farmacología , Plasmodium falciparum/efectos de los fármacos , Aminas/síntesis química , Aminas/química , Antiinfecciosos/síntesis química , Antiinfecciosos/química , Cationes/síntesis química , Cationes/química , Cationes/farmacología , Línea Celular , Ciclopropanos/síntesis química , Ciclopropanos/química , Humanos , Concentración 50 Inhibidora , Malaria/tratamiento farmacológico , Malaria/parasitología , Staphylococcus epidermidis/efectos de los fármacos
13.
J Chem Phys ; 153(24): 244902, 2020 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-33380093

RESUMEN

Polymers are desirable optoelectronic materials, stemming from their solution processability, tunable electronic properties, and large absorption coefficients. An exciting development is the recent discovery that singlet fission (SF), the conversion of a singlet exciton to a pair of triplet states, can occur along the backbone of an individual conjugated polymer chain. Compared to other intramolecular SF compounds, the nature of the triplet pair state in SF polymers remains poorly understood, hampering the development of new materials with optimized excited state dynamics. Here, we investigate the effect of solvent polarity on the triplet pair dynamics in the SF polymer polybenzodithiophene-thiophene-1,1-dioxide. We use transient emission measurements to study isolated polymer chains in solution and use the change in the solvent polarity to investigate the role of charge transfer character in both the singlet exciton and the triplet pair multiexciton. We identify both singlet fluorescence and direct triplet pair emission, indicating significant symmetry breaking. Surprisingly, the singlet emission peak is relatively insensitive to solvent polarity despite its nominal "charge-transfer" nature. In contrast, the redshift of the triplet pair energy with increasing solvent polarity indicates significant charge transfer character. While the energy separation between singlet and triplet pair states increases with solvent polarity, the overall SF rate constant depends on both the energetic driving force and additional environmental factors. The triplet pair lifetime is directly determined by the solvent effect on its overall energy. The dominant recombination channel is a concerted, radiationless decay process that scales as predicted by a simple energy gap law.

14.
Nano Lett ; 19(4): 2543-2548, 2019 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-30884240

RESUMEN

Stable organic radicals have potential applications for building organic spintronic devices. To fulfill this potential, the interface between organic radicals and metal electrodes must be well characterized. Here, through a combined effort that includes synthesis, scanning tunneling microscopy, X-ray spectroscopy, and single-molecule conductance measurements, we comprehensively probe the electronic interaction between gold metal electrodes and a benchtop stable radical-the Blatter radical. We find that despite its open-shell character and having a half-filled orbital close to the Fermi level, the radical is stable on a gold substrate under ultrahigh vacuum. We observe a Kondo resonance arising from the radical and spectroscopic signatures of its half-filled orbitals. By contrast, in solution-based single-molecule conductance measurements, the radical character is lost through oxidation with charge transfer occurring from the molecule to metal. Our experiments show that the stability of radical states can be very sensitive to the environment around the molecule.

15.
Nano Lett ; 19(4): 2555-2561, 2019 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-30821465

RESUMEN

The promise of the field of single-molecule electronics is to reveal a new class of quantum devices that leverages the strong electronic interactions inherent to subnanometer scale systems. Here, we form Au-molecule-Au junctions using a custom scanning tunneling microscope and explore charge transport through current-voltage measurements. We focus on the resonant tunneling regime of two molecules, one that is primarily an electron conductor and one that conducts primarily holes. We find that in the high bias regime, junctions that do not rupture demonstrate reproducible and pronounced negative differential resistance (NDR)-like features followed by hysteresis with peak-to-valley ratios exceeding 100 in some cases. Furthermore, we show that both junction rupture and NDR are induced by charging of the molecular orbital dominating transport and find that the charging is reversible at lower bias and with time with kinetic time scales on the order of hundreds of milliseconds. We argue that these results cannot be explained by existing models of charge transport and likely require theoretical advances describing the transition from coherent to sequential tunneling. Our work also suggests new rules for operating single-molecule devices at high bias to obtain highly nonlinear behavior.

16.
J Am Chem Soc ; 141(9): 3777-3781, 2019 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-30793886

RESUMEN

Optical upconversion based on triplet fusion (TF), also known as triplet-triplet annihilation, is a process by which two or more low-energy photons are converted to one higher energy photon. This process requires two components, a sensitizer which absorbs the incident low-energy photons and an annihilator which emits the higher energy photons. While much attention has been given to the investigation of new types of sensitizers, very little work has been done on the exploration of new annihilators. In this work, we show that the singlet energy of diketopyrrolopyrroles (DPPs) can be altered by modifying the pendant aryl substituents to the core. This allows us to meet the energetic requirements necessary for TF upconversion and demonstrates DPPs as a new class of annihilator molecules. Using this new DPP platform, the output wavelength from upconversion can easily be tuned, which will greatly diversify the number of applications of DPPs in upconversion technologies.

17.
J Am Chem Soc ; 141(24): 9564-9569, 2019 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-31117645

RESUMEN

Singlet fission has emerged as a key mechanism of exciton multiplication in organic chromophores, generating two triplet excitons from a single photon. Singlet fission is typically studied in crystalline films or in isolated dimers. Here, we investigate an intermediate regime where through-space interactions mediate singlet fission and triplet pair recombination within isolated polymer chains. Specifically, we investigate how appending pentacenes to a polynorbornene backbone can lead to macromolecules that take advantage of through-space π-π interactions for fast singlet fission and rapid triplet pair dissociation. Singlet fission in these systems is affected by molecular dynamics, and triplet-triplet recombination is a geminate process where the rate of recombination scales with molecular-weight. We find that these pendent pentacene polymers yield free triplets with lifetimes that surpass those of crystalline chromophores in both solution as isolated polymers and in thin films.

18.
J Phys Chem A ; 123(13): 2527-2536, 2019 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-30802051

RESUMEN

Recent synthetic studies on the organic molecules tetracene and pentacene have found certain dimers and oligomers to exhibit an intense absorption in the visible region of the spectrum that is not present in the monomer or many previously studied dimers. In this article we combine experimental synthesis with electronic structure theory and spectral computation to show that this absorption arises from an otherwise dark charge-transfer excitation "borrowing intensity" from an intense UV excitation. Further, by characterizing the role of relevant monomer molecular orbitals, we arrive at a design principle that allows us to predict the presence or absence of an additional absorption based on the bonding geometry of the dimer. We find this rule correctly explains the spectra of a wide range of acene derivatives and solves an unexplained structure-spectrum phenomenon first observed over 70 years ago. These results pave the way for the design of highly absorbent chromophores with applications ranging from photovoltaics to liquid crystals.

19.
Angew Chem Int Ed Engl ; 58(32): 11063-11067, 2019 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-31115954

RESUMEN

The adsorption geometry and the electronic structure of a Blatter radical derivative on a gold surface were investigated by a combination of high-resolution noncontact atomic force microscopy and scanning tunneling microscopy. While the hybridization with the substrate hinders direct access to the molecular states, we show that the unpaired-electron orbital can be probed with Ångström resolution by mapping the spatial distribution of the Kondo resonance. The Blatter derivative features a peculiar delocalization of the unpaired-electron orbital over some but not all moieties of the molecule, such that the Kondo signature can be related to the spatial fingerprint of the orbital. We observe a direct correspondence between these two quantities, including a pronounced nodal plane structure. Finally, we demonstrate that the spatial signature of the Kondo resonance also persists upon noncovalent dimerization of molecules.

20.
J Am Chem Soc ; 140(16): 5607-5611, 2018 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-29648456

RESUMEN

We describe a new diblock copolymer composed of two segments with complementary functionalities. One block contains pendent photo-cross-linkable cinnamoyl groups, and the other contains molecular clusters, Co6Se8, capable of multielectron redox processes. This multifunctional macromolecule is synthesized by sequential ring-opening metathesis polymerization of monomers constructed using norbornene moieties. Remarkably, the tethered molecular cluster gives access to three different charge states in N, N-dimethylformamide: neutral, +1, and +2. In tetrahydrofuran, by contrast, the charged copolymer self-assembles into vesicles that inhibit the redox reactions. The wall of these vesicles can be cross-linked by exploiting the photoinduced 2 + 2 cycloaddition of the cinnamoyls to form cyclobutane dimers. Moreover, these vesicles can be loaded with molecular cargo and used as cross-linkable containers; we demonstrate this feature by encapsulating the molecular dye methylene blue into the capsules. Our work is the first report of a well-defined block copolymer containing a metal chalcogenide molecular cluster; more generally, it opens the door to new applications of metal-containing polymers.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA