Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sensors (Basel) ; 22(10)2022 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-35632244

RESUMEN

Diabetic foot (DF) complications are associated with temperature variations. The occurrence of DF ulceration could be reduced by using a contactless thermal camera. The aim of our study is to provide a decision support tool for the prevention of DF ulcers. Thus, the segmentation of the plantar foot in thermal images is a challenging step for a non-constraining acquisition protocol. This paper presents a new segmentation method for plantar foot thermal images. This method is designed to include five pieces of prior information regarding the aforementioned images. First, a new energy term is added to the snake of Kass et al. in order to force its curvature to match that of the prior shape, which has a known form. Second, we defined the initial contour as the downsized prior-shape contour, which is placed inside the plantar foot surface in a vertical orientation. This choice makes the snake avoid strong false boundaries present outside the plantar region when evolving. As a result, the snake produces a smooth contour that rapidly converges to the true boundaries of the foot. The proposed method is compared to two classical prior-shape snake methods, that of Ahmed et al. and that of Chen et al. A database of 50 plantar foot thermal images was processed. The results show that the proposed method outperforms the previous two methods with a root-mean-square error of 5.12 pixels and a dice similarity coefficient of 94%. The segmentation of the plantar foot regions in the thermal images helped us to assess the point-to-point temperature differences between the two feet in order to detect hyperthermia regions. The presence of such regions is the pre-sign of ulcers in the diabetic foot. Furthermore, our method was applied to hyperthermia detection to illustrate the promising potential of thermography in the case of the diabetic foot. Associated with a friendly acquisition protocol, the proposed segmentation method is the first step for a future mobile smartphone-based plantar foot thermal analysis for diabetic foot patients.


Asunto(s)
Pie Diabético , Temperatura Corporal , Pie Diabético/diagnóstico por imagen , Fiebre/diagnóstico , Pie/diagnóstico por imagen , Humanos , Termografía/métodos , Úlcera
2.
Sci Rep ; 13(1): 19220, 2023 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-37932344

RESUMEN

Crop disease detection and management is critical to improving productivity, reducing costs, and promoting environmentally friendly crop treatment methods. Modern technologies, such as data mining and machine learning algorithms, have been used to develop automated crop disease detection systems. However, centralized approach to data collection and model training induces challenges in terms of data privacy, availability, and transfer costs. To address these challenges, federated learning appears to be a promising solution. In this paper, we explored the application of federated learning for crop disease classification using image analysis. We developed and studied convolutional neural network (CNN) models and those based on attention mechanisms, in this case vision transformers (ViT), using federated learning, leveraging an open access image dataset from the "PlantVillage" platform. Experiments conducted concluded that the performance of models trained by federated learning is influenced by the number of learners involved, the number of communication rounds, the number of local iterations and the quality of the data. With the objective of highlighting the potential of federated learning in crop disease classification, among the CNN models tested, ResNet50 performed better in several experiments than the other models, and proved to be an optimal choice, but also the most suitable for a federated learning scenario. The ViT_B16 and ViT_B32 Vision Transformers require more computational time, making them less suitable in a federated learning scenario, where computational time and communication costs are key parameters. The paper provides a state-of-the-art analysis, presents our methodology and experimental results, and concludes with ideas and future directions for our research on using federated learning in the context of crop disease classification.


Asunto(s)
Algoritmos , Comunicación , Recolección de Datos , Minería de Datos , Suministros de Energía Eléctrica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA