Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Biochem Soc Trans ; 50(2): 665-673, 2022 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-35437569

RESUMEN

As an emerging hot topic of the last decade, Organ on Chip (OoC) is a new technology that is attracting interest from both basic and translational scientists. The Biochemical Society, with its mission of supporting the advancement of science, with addressing grand challenges that have societal impact, has included OoC into their agenda to review the current state of the art, bottlenecks and future directions. This conference brought together representatives of the main stakeholders in the OoC field including academics, end-users, regulators and technology developers to discuss and identify requirements for this new technology to deliver on par with the expectations and the key challenges and gaps that still need to be addressed to achieve robust human-relevant tools, able to positively impact decision making in the pharmaceutical industry and reduce overreliance on poorly predictive animal models.


Asunto(s)
Dispositivos Laboratorio en un Chip , Tecnología , Animales , Modelos Animales , Análisis de Secuencia por Matrices de Oligonucleótidos
2.
Biochem Soc Trans ; 49(4): 1881-1890, 2021 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-34397080

RESUMEN

Organ-on-chip (OoC) systems are in vitro microfluidic models that mimic the microstructures, functions and physiochemical environments of whole living organs more accurately than two-dimensional models. While still in their infancy, OoCs are expected to bring ground-breaking benefits to a myriad of applications, enabling more human-relevant candidate drug efficacy and toxicity studies, and providing greater insights into mechanisms of human disease. Here, we explore a selection of applications of OoC systems. The future directions and scope of implementing OoCs across the drug discovery process are also discussed.


Asunto(s)
Descubrimiento de Drogas/métodos , Dispositivos Laboratorio en un Chip , Biomimética , Humanos , Modelos Químicos
3.
ALTEX ; 41(3): 469-484, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38746991

RESUMEN

Microphysiological systems (MPS) are gaining broader application in the pharmaceutical industry but have primarily been leveraged in early discovery toxicology and pharmacology studies with small molecules. The adoption of MPS offers a promising avenue to reduce animal use, improve in-vitro-to-in-vivo translation of pharmacokinetics/pharmacodynamics and toxicity correlation, and provide mechanistic understanding of model species suitability. While MPS have demonstrated utility in these areas with small molecules and biologics, MPS models in cell therapy development have not been fully explored, let alone validated. Distinguishing features of MPS, including long-term viability and physiologically relevant expression of functional enzymes, receptors, and pharmacological targets make them attractive tools for nonclinical characterization. However, there is currently limited published evidence of MPS being utilized to study the disposition, metabolism, pharmacology, and toxicity profiles of cell therapies. This review provides an industry perspective on the nonclinical application of MPS on cell therapies, first with a focus on oncology applications followed by examples in regenerative medicine.


Microphysiological systems (MPS) are advanced cell models, applied in the pharmaceutical industry to characterize novel therapies. While their application in studies of small molecule ther­apies has been very successful, the use of these models to study cell therapies has been limited. Cell therapies consist of cells and are living drugs, often with complex biological mechanisms of action, which can be very challenging to study. However, MPS have several features that make them attractive for studying cell therapies, including possibilities for longer-term studies and the ability to mimic physiologically relevant biological functions. MPS can mimic complex biological systems and processes, as such, the adoption of MPS offers a promising avenue to reduce the use of animals in the characterization of novel therapies. This review provides an industry perspective on current chal­lenges and highlights opportunities for using MPS in the development of cell therapies.


Asunto(s)
Alternativas a las Pruebas en Animales , Tratamiento Basado en Trasplante de Células y Tejidos , Animales , Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Humanos , Medicina Regenerativa/métodos , Sistemas Microfisiológicos
4.
Stem Cell Reports ; 19(5): 604-617, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38670111

RESUMEN

Cell culture technology has evolved, moving from single-cell and monolayer methods to 3D models like reaggregates, spheroids, and organoids, improved with bioengineering like microfabrication and bioprinting. These advancements, termed microphysiological systems (MPSs), closely replicate tissue environments and human physiology, enhancing research and biomedical uses. However, MPS complexity introduces standardization challenges, impacting reproducibility and trust. We offer guidelines for quality management and control criteria specific to MPSs, facilitating reliable outcomes without stifling innovation. Our fit-for-purpose recommendations provide actionable advice for achieving consistent MPS performance.


Asunto(s)
Técnicas de Cultivo de Célula , Humanos , Reproducibilidad de los Resultados , Técnicas de Cultivo de Célula/métodos , Control de Calidad , Organoides/citología , Sistemas Microfisiológicos
5.
Adv Biol (Weinh) ; : e2300131, 2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37814378

RESUMEN

In May 2022, there is an International Regulatory and Pharmaceutical Industry (Innovation and Quality [IQ] Microphysiological Systems [MPS] Affiliate) Workshop on the standardization of complex in vitro models (CIVMs) in drug development. This manuscript summarizes the discussions and conclusions of this joint workshop organized and executed by the IQ MPS Affiliate and the United States Food and Drug Administration (FDA). A key objective of the workshop is to facilitate discussions around opportunities and/or needs for standardization of MPS and chart potential pathways to increase model utilization in the context of regulatory decision making. Participation in the workshop included 200 attendees from the FDA, IQ MPS Affiliate, and 26 global regulatory organizations and affiliated parties representing Europe, Japan, and Canada. It is agreed that understanding global perspectives regarding the readiness of CIVM/MPS models for regulatory decision making and potential pathways to gaining acceptance is useful to align on globally. The obstacles are currently too great to develop standards for every context of use (COU). Instead, it is suggested that a more tractable approach may be to think of broadly applicable standards that can be applied regardless of COU and/or organ system. Considerations and next steps for this effort are described.

7.
Nanoscale ; 4(9): 2851-4, 2012 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-22466253

RESUMEN

Here we report a new technique, Correlative Light-Ion Microscopy (CLIM), to correlate SEM-like micrographs with fluorescence images. This technique presents significant advantages over conventional methods in enabling topographical and biochemical information to be correlated with nanoscale resolution without destroying the fluorescence signal. We demonstrate the utility of CLIM for a variety of investigations of cell substrate interactions validating its potential to become a routine procedure in biomedical research.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA