Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Redox Biol ; 72: 103138, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38581858

RESUMEN

The oxytosis/ferroptosis regulated cell death pathway is an emerging field of research owing to its pathophysiological relevance to a wide range of neurological disorders, including Alzheimer's and Parkinson's diseases and traumatic brain injury. Developing novel neurotherapeutics to inhibit oxytosis/ferroptosis offers exciting opportunities for the treatment of these and other neurological diseases. Previously, we discovered cannabinol (CBN) as a unique, potent inhibitor of oxytosis/ferroptosis by targeting mitochondria and modulating their function in neuronal cells. To further elucidate which key pharmacophores and chemical space are essential to the beneficial effects of CBN, we herein introduce a fragment-based drug discovery strategy in conjunction with cell-based phenotypic screens using oxytosis/ferroptosis to determine the structure-activity relationship of CBN. The resulting information led to the development of four new CBN analogs, CP1-CP4, that not only preserve the sub-micromolar potency of neuroprotection and mitochondria-modulating activities seen with CBN in neuronal cell models but also have better druglike properties. Moreover, compared to CBN, the analog CP1 shows improved in vivo efficacy in the Drosophila model of mild traumatic brain injury. Together these studies identify the key molecular scaffolds of cannabinoids that contribute to neuroprotection against oxytosis/ferroptosis. They also highlight the advantageous approach of combining in vitro cell-based assays and rapid in vivo studies using Drosophila models for evaluating new therapeutic compounds.


Asunto(s)
Cannabinol , Descubrimiento de Drogas , Animales , Humanos , Cannabinol/farmacología , Cannabinol/análogos & derivados , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Enfermedades del Sistema Nervioso/tratamiento farmacológico , Modelos Animales de Enfermedad , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/química , Fármacos Neuroprotectores/uso terapéutico , Relación Estructura-Actividad , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Drosophila
2.
Artículo en Inglés | MEDLINE | ID: mdl-37158809

RESUMEN

Introduction: The legalization of cannabis products has increased their usage in the United States. Among the ∼500 active compounds, this is especially true for cannabidiol (CBD)-based products, which are being used to treat a range of ailments. Research is ongoing regarding the safety, therapeutic potential, and molecular mechanism of cannabinoids. Drosophila (fruit flies) are widely used to model a range of factors that impact neural aging, stress responses, and longevity. Materials and Methods: Adult wild-type Drosophila melanogaster cohorts (w1118/+) were treated with different Δ9-tetrahydrocannabinol (THC) and CBD dosages and examined for neural protective properties using established neural aging and trauma models. The therapeutic potential of each compound was assessed using circadian and locomotor behavioral assays and longevity profiles. Changes to NF-κB pathway activation were assessed by measuring expression levels of downstream targets using quantitative real-time polymerase chain reaction analysis of neural cDNAs. Results: Flies exposed to different CBD or THC dosages showed minimal effects to sleep and circadian-based behaviors or the age-dependent decline in locomotion. The 2-week CBD (3 µM) treatment did significantly enhance longevity. Flies exposed to different CBD and THC dosages were also examined under stress conditions, using the Drosophila mild traumatic brain injury (mTBI) model (10×). Pretreatment with either compound did not alter baseline expression of key inflammatory markers (NF-κB targets), but did reduce neural mRNA profiles at a key 4-h time point following mTBI exposure. Locomotor responses were also significantly improved 1 and 2 weeks following mTBI. After mTBI (10×) exposure, the 48-h mortality rate improved for CBD (3 µM)-treated flies, as were global average longevity profiles for other CBD doses tested. While not significant, THC (0.1 µM)-treated flies show a net positive impact on acute mortality and longevity profiles following mTBI (10×) exposure. Conclusions: This study shows that the CBD and THC dosages examined had at most a modest impact on basal neural function, while demonstrating that CBD treatments had significant neural protective properties for flies following exposure to traumatic injury.

3.
Microbiol Resour Announc ; 10(32): e0040421, 2021 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-34382833

RESUMEN

Here, we report the draft genome sequences of 10 marine Pseudoalteromonas bacteria that were isolated, assembled, and annotated by undergraduate students participating in a marine microbial genomics course. Genomic comparisons suggest that 7 of the 10 strains are novel isolates, providing a resource for future marine microbiology investigations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA