Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nano Lett ; 18(3): 1952-1961, 2018 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-29481758

RESUMEN

Composite multiferroic systems, consisting of a piezoelectric substrate coupled with a ferromagnetic thin film, are of great interest from a technological point of view because they offer a path toward the development of ultralow power magnetoelectric devices. The key aspect of those systems is the possibility to control magnetization via an electric field, relying on the magneto-elastic coupling at the interface between the piezoelectric and the ferromagnetic components. Accordingly, a direct measurement of both the electrically induced magnetic behavior and of the piezo-strain driving such behavior is crucial for better understanding and further developing these materials systems. In this work, we measure and characterize the micron-scale strain and magnetic response, as a function of an applied electric field, in a composite multiferroic system composed of 1 and 2 µm squares of Ni fabricated on a prepoled [Pb(Mg1/3Nb2/3)O3]0.69-[PbTiO3]0.31 (PMN-PT) single crystal substrate by X-ray microdiffraction and X-ray photoemission electron microscopy, respectively. These two complementary measurements of the same area on the sample indicate the presence of a nonuniform strain which strongly influences the reorientation of the magnetic state within identical Ni microstructures along the surface of the sample. Micromagnetic simulations confirm these experimental observations. This study emphasizes the critical importance of surface and interface engineering on the micron-scale in composite multiferroic structures and introduces a robust method to characterize future devices on these length scales.

2.
J Mech Behav Biomed Mater ; 90: 591-603, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30500697

RESUMEN

Realistic modeling of biologic material is required for optimizing fidelity in computer-aided surgical training and assistance systems. The modeling of liver tissue has remained challenging due to its nonlinear viscoelastic properties and high hysteresis of the stress-strain relation. While prior studies have described the behavior of liver tissue during the loading status (in elongation, compression, or indentation tests) or unloading status (in stress relaxation or creep tests), a hysteresis curve with both loading and unloading processes was incompletely defined. We seek to use a single material model to characterize the mechanical properties of liver tissue in a full indentation cycle ex vivo perfused and then sectioned. Based on measurements taken from ex-vivo perfused porcine livers, we converted force-displacement curves to stress-strain curves and developed a visco-hyperelastic constitutive model to characterize the liver's mechanical behavior at different locations under various rates of indentation (1, 2, 5, 10, and 20 mm/s). The proposed model is a mixed visco-hyperelastic model with up to 6 coefficients. The normalized root mean square standard deviations of fitted curves are less than 5% and 10% in low (<0.05) and high strain (>0.3) conditions respectively.


Asunto(s)
Elasticidad , Hígado/citología , Hígado/fisiología , Ensayo de Materiales/métodos , Modelos Biológicos , Perfusión , Animales , Fenómenos Biomecánicos , Análisis de Elementos Finitos , Ensayo de Materiales/instrumentación , Porcinos , Viscosidad , Soporte de Peso
3.
Sci Rep ; 8(1): 5207, 2018 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-29581531

RESUMEN

Strain-coupled multiferroic heterostructures provide a path to energy-efficient, voltage-controlled magnetic nanoscale devices, a region where current-based methods of magnetic control suffer from Ohmic dissipation. Growing interest in highly magnetoelastic materials, such as Terfenol-D, prompts a more accurate understanding of their magnetization behavior. To address this need, we simulate the strain-induced magnetization change with two modeling methods: the commonly used unidirectional model and the recently developed bidirectional model. Unidirectional models account for magnetoelastic effects only, while bidirectional models account for both magnetoelastic and magnetostrictive effects. We found unidirectional models are on par with bidirectional models when describing the magnetic behavior in weakly magnetoelastic materials (e.g., Nickel), but the two models deviate when highly magnetoelastic materials (e.g., Terfenol-D) are introduced. These results suggest that magnetostrictive feedback is critical for modeling highly magnetoelastic materials, as opposed to weaker magnetoelastic materials, where we observe only minor differences between the two methods' outputs. To our best knowledge, this work represents the first comparison of unidirectional and bidirectional modeling in composite multiferroic systems, demonstrating that back-coupling of magnetization to strain can inhibit formation and rotation of magnetic states, highlighting the need to revisit the assumption that unidirectional modeling always captures the necessary physics in strain-mediated multiferroics.

4.
ACS Nano ; 9(5): 4814-26, 2015 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-25906195

RESUMEN

In this work, we experimentally demonstrate deterministic electrically driven, strain-mediated domain wall (DW) rotation in ferromagnetic Ni rings fabricated on piezoelectric [Pb(Mg1/3Nb2/3)O3]0.66-[PbTiO3]0.34 (PMN-PT) substrates. While simultaneously imaging the Ni rings with X-ray magnetic circular dichroism photoemission electron microscopy, an electric field is applied across the PMN-PT substrate that induces strain in the ring structures, driving DW rotation around the ring toward the dominant PMN-PT strain axis by the inverse magnetostriction effect. The DW rotation we observe is analytically predicted using a fully coupled micromagnetic/elastodynamic multiphysics simulation, which verifies that the experimental behavior is caused by the electrically generated strain in this multiferroic system. Finally, this DW rotation is used to capture and manipulate micrometer-scale magnetic beads in a fluidic environment to demonstrate a proof-of-concept energy-efficient pathway for multiferroic-based lab-on-a-chip applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA