Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Mol Cell Cardiol ; 182: 44-53, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37433391

RESUMEN

Cardiac excitation-contraction coupling (ECC) depends on Ca2+ release from intracellular stores via ryanodine receptors (RyRs) triggered by L-type Ca2+ channels (LCCs). Uncertain numbers of RyRs and LCCs form 'couplons' whose activation produces Ca2+ sparks, which summate to form a cell-wide Ca2+ transient that switches on contraction. Voltage (Vm) changes during the action potential (AP) and stochasticity in channel gating should create variability in Ca2+ spark timing, but Ca2+ transient wavefronts have remarkable uniformity. To examine how this is achieved, we measured the Vm-dependence of evoked Ca2+ spark probability (Pspark) and latency over a wide voltage range in rat ventricular cells. With depolarising steps, Ca2+ spark latency showed a U-shaped Vm-dependence, while repolarising steps from 50 mV produced Ca2+ spark latencies that increased monotonically with Vm. A computer model based on reported channel gating and geometry reproduced our experimental data and revealed a likely RyR:LCC stoichiometry of âˆ¼ 5:1 for the Ca2+ spark initiating complex (IC). Using the experimental AP waveform, the model revealed a high coupling fidelity (Pcpl âˆ¼ 0.5) between each LCC opening and IC activation. The presence of âˆ¼ 4 ICs per couplon reduced Ca2+ spark latency and increased Pspark to match experimental data. Variability in AP release timing is less than that seen with voltage steps because the AP overshoot and later repolarization decrease Pspark due to effects on LCC flux and LCC deactivation respectively. This work provides a framework for explaining the Vm- and time-dependence of Pspark, and indicates how ion channel dispersion in disease can contribute to dyssynchrony in Ca2+ release.


Asunto(s)
Señalización del Calcio , Miocitos Cardíacos , Ratas , Animales , Miocitos Cardíacos/metabolismo , Ventrículos Cardíacos/metabolismo , Acoplamiento Excitación-Contracción , Canales Iónicos/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Calcio/metabolismo , Retículo Sarcoplasmático/metabolismo
2.
Proc Natl Acad Sci U S A ; 117(5): 2687-2692, 2020 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-31969455

RESUMEN

Sudden death in heart failure patients is a major clinical problem worldwide, but it is unclear how arrhythmogenic early afterdepolarizations (EADs) are triggered in failing heart cells. To examine EAD initiation, high-sensitivity intracellular Ca2+ measurements were combined with action potential voltage clamp techniques in a physiologically relevant heart failure model. In failing cells, the loss of Ca2+ release synchrony at the start of the action potential leads to an increase in number of microscopic intracellular Ca2+ release events ("late" Ca2+ sparks) during phase 2-3 of the action potential. These late Ca2+ sparks prolong the Ca2+ transient that activates contraction and can trigger propagating microscopic Ca2+ ripples, larger macroscopic Ca2+ waves, and EADs. Modification of the action potential to include steps to different potentials revealed the amount of current generated by these late Ca2+ sparks and their (subsequent) spatiotemporal summation into Ca2+ ripples/waves. Comparison of this current to the net current that causes action potential repolarization shows that late Ca2+ sparks provide a mechanism for EAD initiation. Computer simulations confirmed that this forms the basis of a strong oscillatory positive feedback system that can act in parallel with other purely voltage-dependent ionic mechanisms for EAD initiation. In failing heart cells, restoration of the action potential to a nonfailing phase 1 configuration improved the synchrony of excitation-contraction coupling, increased Ca2+ transient amplitude, and suppressed late Ca2+ sparks. Therapeutic control of late Ca2+ spark activity may provide an additional approach for treating heart failure and reduce the risk for sudden cardiac death.


Asunto(s)
Arritmias Cardíacas/metabolismo , Calcio/metabolismo , Insuficiencia Cardíaca/metabolismo , Potenciales de Acción , Animales , Arritmias Cardíacas/fisiopatología , Acoplamiento Excitación-Contracción , Insuficiencia Cardíaca/fisiopatología , Humanos , Miocitos Cardíacos/metabolismo
3.
J Mol Cell Cardiol ; 172: 52-62, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35908686

RESUMEN

Loss of ventricular action potential (AP) early phase 1 repolarization may contribute to the impaired Ca2+ release and increased risk of sudden cardiac death in heart failure. Therefore, restoring AP phase 1 by augmenting the fast transient outward K+ current (Itof) might be beneficial, but direct experimental evidence to support this proposition in failing cardiomyocytes is limited. Dynamic clamp was used to selectively modulate the contribution of Itof to the AP and Ca2+ transient in both normal (guinea pig and rabbit) and in failing rabbit cardiac myocytes. Opposing native Itof in non-failing rabbit myocytes increased Ca2+ release heterogeneity, late Ca2+ sparks (LCS) frequency and AP duration. (APD). In contrast, increasing Itof in failing myocytes and guinea pig myocytes (the latter normally lacking Itof) increased Ca2+ transient amplitude, Ca2+ release synchrony, and shortened APD. Computer simulations also showed faster Ca2+ transient decay (mainly due to fewer LCS), decreased inward Na+/Ca2+ exchange current and APD. When the Itof conductance was increased to ~0.2 nS/pF in failing cells (a value slightly greater than seen in typical human epicardial myocytes), Ca2+ release synchrony improved and AP duration decreased slightly. Further increases in Itof can cause Ca2+ release to decrease as the peak of the bell-shaped ICa-voltage relationship is passed and premature AP repolarization develops. These results suggest that there is an optimal range for Itof enhancement that may support Ca2+ release synchrony and improve electrical stability in heart failure with the caveat that uncontrolled Itof enhancement should be avoided.


Asunto(s)
Insuficiencia Cardíaca , Miocitos Cardíacos , Humanos , Conejos , Cobayas , Animales , Miocitos Cardíacos/fisiología , Potenciales de Acción/fisiología , Ventrículos Cardíacos , Sodio , Calcio
4.
J Mol Cell Cardiol ; 164: 29-41, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34823101

RESUMEN

The fast transient outward potassium current (Ito,f) plays a key role in phase 1 repolarization of the human cardiac action potential (AP) and its reduction in heart failure (HF) contributes to the loss of contractility. Therefore, restoring Ito,f might be beneficial for treating HF. The coding sequence of a P2A peptide was cloned, in frame, between Kv4.3 and KChIP2.1 genes and ribosomal skipping was confirmed by Western blotting. Typical Ito,f properties with slowed inactivation and accelerated recovery from inactivation due to the association of KChIP2.1 with Kv4.3 was seen in transfected HEK293 cells. Both bicistronic components trafficked to the plasmamembrane and in adenovirus transduced rabbit cardiomyocytes both t-tubular and sarcolemmal construct labelling appeared. The resulting current was similar to Ito,f seen in human ventricular cardiomyocytes and was 50% blocked at ~0.8 mmol/l 4-aminopyridine and increased ~30% by 5 µmol/l NS5806 (an Ito,f agonist). Variation in the density of the expressed Ito,f, in rabbit cardiomyocytes recapitulated typical species-dependent variations in AP morphology. Simultaneous voltage recording and intracellular Ca2+ imaging showed that modification of phase 1 to a non-failing human phenotype improved the rate of rise and magnitude of the Ca2+ transient. Ito,f expression also reduced AP triangulation but did not affect ICa,L and INa magnitudes. This raises the possibility for a new gene-based therapeutic approach to HF based on selective phase 1 modification.


Asunto(s)
Insuficiencia Cardíaca , Canales de Potasio Shal , Potenciales de Acción/fisiología , Animales , Células HEK293 , Humanos , Miocitos Cardíacos/metabolismo , Conejos , Canales de Potasio Shal/genética , Canales de Potasio Shal/metabolismo , Transgenes
5.
Proc Natl Acad Sci U S A ; 115(30): E7073-E7080, 2018 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-29991602

RESUMEN

Cardiac transverse (t-) tubules carry both electrical excitation and solutes toward the cell center but their ability to transport small molecules is unclear. While fluorescence recovery after photobleaching (FRAP) can provide an approach to measure local solute movement, extraction of diffusion coefficients is confounded by cell and illumination beam geometries. In this study, we use measured cellular geometry and detailed computer modeling to derive the apparent diffusion coefficient of a 1-kDa solute inside the t-tubular system of rabbit and mouse ventricular cardiomyocytes. This approach shows that diffusion within individual t-tubules is more rapid than previously reported. T-tubule tortuosity, varicosities, and the presence of longitudinal elements combine to substantially reduce the apparent rate of solute movement. In steady state, large (>4 kDa) solutes did not freely fill the t-tubule lumen of both species and <50% of the t-tubule volume was available to solutes >70 kDa. Detailed model fitting of FRAP data suggests that solute diffusion is additionally restricted at the t-tubular entrance and this effect was larger in mouse than in rabbit. The possible structural basis of this effect was investigated using electron microscopy and tomography. Near the cell surface, mouse t-tubules are more tortuous and filled with an electron-dense ground substance, previously identified as glycocalyx and a polyanionic mesh. Solute movement in the t-tubule network of rabbit and mouse appears to be explained by their different geometric properties, which impacts the use of these species for understanding t-tubule function and the consequences of changes associated with t-tubule disease.


Asunto(s)
Modelos Cardiovasculares , Miocitos Cardíacos/metabolismo , Animales , Transporte Biológico Activo/fisiología , Ventrículos Cardíacos/citología , Ventrículos Cardíacos/metabolismo , Masculino , Ratones , Miocitos Cardíacos/citología , Conejos
6.
Circ Res ; 122(3): 473-478, 2018 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-29282211

RESUMEN

RATIONALE: The development of a refractory period for Ca2+ spark initiation after Ca2+ release in cardiac myocytes should inhibit further Ca2+ release during the action potential plateau. However, Ca2+ release sites that did not initially activate or which have prematurely recovered from refractoriness might release Ca2+ later during the action potential and alter the cell-wide Ca2+ transient. OBJECTIVE: To investigate the possibility of late Ca2+ spark (LCS) activity in intact isolated cardiac myocytes using fast confocal line scanning with improved confocality and signal to noise. METHODS AND RESULTS: We recorded Ca2+ transients from cardiac ventricular myocytes isolated from rabbit hearts. Action potentials were produced by electric stimulation, and rapid solution changes were used to modify the L-type Ca2+ current. After the upstroke of the Ca2+ transient, LCSs were detected which had increased amplitude compared with diastolic Ca2+ sparks. LCS are triggered by both L-type Ca2+ channel activity during the action potential plateau, as well as by the increase of cytosolic Ca2+ associated with the Ca2+ transient itself. Importantly, a mismatch between sarcoplasmic reticulum load and L-type Ca2+ trigger can increase the number of LCS. The likelihood of triggering an LCS also depends on recovery from refractoriness that appears after prior activation. Consequences of LCS include a reduced rate of decline of the Ca2+ transient and, if frequent, formation of microscopic propagating Ca2+ release events (Ca2+ ripples). Ca2+ ripples resemble Ca2+ waves in terms of local propagation velocity but spread for only a short distance because of limited regeneration. CONCLUSIONS: These new types of Ca2+ signaling behavior extend our understanding of Ca2+-mediated signaling. LCS may provide an arrhythmogenic substrate by slowing the Ca2+ transient decline, as well as by amplifying maintained Ca2+ current effects on intracellular Ca2+ and consequently Na+/Ca2+ exchange current.


Asunto(s)
Señalización del Calcio , Calcio/metabolismo , Acoplamiento Excitación-Contracción/fisiología , Miocitos Cardíacos/metabolismo , Potenciales de Acción , Animales , Canales de Calcio Tipo L/fisiología , Microscopía Confocal , Conejos , Intercambiador de Sodio-Calcio/fisiología , Sístole
7.
Exp Physiol ; 104(5): 654-666, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30786093

RESUMEN

NEW FINDINGS: What is the central question of this study? What is the cellular basis of the protection conferred on the heart by overexpression of caveolin-3 (Cav-3 OE) against many of the features of heart failure normally observed in vivo? What is the main finding and its importance? Cav-3 overexpression has little effect in normal ventricular myocytes but reduces cellular hypertrophy and preserves t-tubular ICa , but not local t-tubular Ca2+ release, in heart failure induced by pressure overload in mice. Thus Cav-3 overexpression provides specific but limited protection following induction of heart failure, although other factors disrupt Ca2+ release. ABSTRACT: Caveolin-3 (Cav-3) is an 18 kDa protein that has been implicated in t-tubule formation and function in cardiac ventricular myocytes. During cardiac hypertrophy and failure, Cav-3 expression decreases, t-tubule structure is disrupted and excitation-contraction coupling (ECC) is impaired. Previous work has suggested that Cav-3 overexpression (OE) is cardio-protective, but the effect of Cav-3 OE on these cellular changes is unknown. We therefore investigated whether Cav-3 OE in mice is protective against the cellular effects of pressure overload induced by 8 weeks' transverse aortic constriction (TAC). Cav-3 OE mice developed cardiac dilatation, decreased stroke volume and ejection fraction, and hypertrophy and pulmonary congestion in response to TAC. These changes were accompanied by cellular hypertrophy, a decrease in t-tubule regularity and density, and impaired local Ca2+ release at the t-tubules. However, the extent of cardiac and cellular hypertrophy was reduced in Cav-3 OE compared to WT mice, and t-tubular Ca2+ current (ICa ) density was maintained. These data suggest that Cav-3 OE helps prevent hypertrophy and loss of t-tubular ICa following TAC, but that other factors disrupt local Ca2+ release.


Asunto(s)
Canales de Calcio/metabolismo , Caveolina 3/metabolismo , Insuficiencia Cardíaca/fisiopatología , Animales , Señalización del Calcio , Cardiomegalia , Caveolina 3/genética , Constricción Patológica/fisiopatología , Ecocardiografía , Insuficiencia Cardíaca/genética , Ventrículos Cardíacos , Masculino , Ratones , Miocitos Cardíacos/metabolismo , Circulación Pulmonar , Retículo Sarcoplasmático/metabolismo , Volumen Sistólico , Vasodilatación
8.
Am J Physiol Heart Circ Physiol ; 314(3): H521-H529, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29101175

RESUMEN

ß2-Adrenoceptors and L-type Ca2+ current ( ICa) redistribute from the t-tubules to the surface membrane of ventricular myocytes from failing hearts. The present study investigated the role of changes in caveolin-3 and PKA signaling, both of which have previously been implicated in this redistribution. ICa was recorded using the whole cell patch-clamp technique from ventricular myocytes isolated from the hearts of rats that had undergone either coronary artery ligation (CAL) or equivalent sham operation 18 wk earlier. ICa distribution between the surface and t-tubule membranes was determined using formamide-induced detubulation (DT). In sham myocytes, ß2-adrenoceptor stimulation increased ICa in intact but not DT myocytes; however, forskolin (to increase cAMP directly) and H-89 (to inhibit PKA) increased and decreased, respectively, ICa at both the surface and t-tubule membranes. C3SD peptide (which decreases binding to caveolin-3) inhibited ICa in intact but not DT myocytes but had no effect in the presence of H-89. In contrast, in CAL myocytes, ß2-adrenoceptor stimulation increased ICa in both intact and DT myocytes, but C3SD had no effect on ICa; forskolin and H-89 had similar effects as in sham myocytes. These data show the redistribution of ß2 -adrenoceptor activity and ICa in CAL myocytes and suggest constitutive stimulation of ICa by PKA in sham myocytes via concurrent caveolin-3-dependent (at the t-tubules) and caveolin-3-independent mechanisms, with the former being lost in CAL myocytes. NEW & NOTEWORTHY In ventricular myocytes from normal hearts, regulation of the L-type Ca2+ current by ß2-adrenoceptors and the constitutive regulation by caveolin-3 is localized to the t-tubules. In heart failure, the regulation of L-type Ca2+ current by ß2-adrenoceptors is redistributed to the surface membrane, and the constitutive regulation by caveolin-3 is lost.


Asunto(s)
Canales de Calcio Tipo L/metabolismo , Señalización del Calcio , Caveolina 3/metabolismo , Insuficiencia Cardíaca/metabolismo , Infarto del Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Potenciales de Acción , Animales , AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Modelos Animales de Enfermedad , Insuficiencia Cardíaca/fisiopatología , Masculino , Infarto del Miocardio/fisiopatología , Transporte de Proteínas , Ratas Wistar , Receptores Adrenérgicos beta 2/metabolismo
9.
Am J Physiol Heart Circ Physiol ; 315(5): H1101-H1111, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30028203

RESUMEN

Caveolin-3 (Cav-3) is a protein that has been implicated in t-tubule formation and function in cardiac ventricular myocytes. In cardiac hypertrophy and failure, Cav-3 expression decreases, t-tubule structure is disrupted, and excitation-contraction coupling is impaired. However, the extent to which the decrease in Cav-3 expression underlies these changes is unclear. We therefore investigated the structure and function of myocytes isolated from the hearts of Cav-3 knockout (KO) mice. These mice showed cardiac dilatation and decreased ejection fraction in vivo compared with wild-type control mice. Isolated KO myocytes showed cellular hypertrophy, altered t-tubule structure, and decreased L-type Ca2+ channel current ( ICa) density. This decrease in density occurred predominantly in the t-tubules, with no change in total ICa, and was therefore a consequence of the increase in membrane area. Cav-3 KO had no effect on L-type Ca2+ channel expression, and C3SD peptide, which mimics the scaffolding domain of Cav-3, had no effect on ICa in KO myocytes. However, inhibition of PKA using H-89 decreased ICa at the surface and t-tubule membranes in both KO and wild-type myocytes. Cav-3 KO had no significant effect on Na+/Ca2+ exchanger current or Ca2+ release. These data suggest that Cav-3 KO causes cellular hypertrophy, thereby decreasing t-tubular ICa density. NEW & NOTEWORTHY Caveolin-3 (Cav-3) is a protein that inhibits hypertrophic pathways, has been implicated in the formation and function of cardiac t-tubules, and shows decreased expression in heart failure. This study demonstrates that Cav-3 knockout mice show cardiac dysfunction in vivo, while isolated ventricular myocytes show cellular hypertrophy, changes in t-tubule structure, and decreased t-tubular L-type Ca2+ current density, suggesting that decreased Cav-3 expression contributes to these changes in cardiac hypertrophy and failure.


Asunto(s)
Canales de Calcio Tipo L/metabolismo , Señalización del Calcio , Caveolina 3/deficiencia , Ventrículos Cardíacos/metabolismo , Hipertrofia Ventricular Izquierda/metabolismo , Miocitos Cardíacos/metabolismo , Disfunción Ventricular Izquierda/metabolismo , Potenciales de Acción , Animales , Caveolina 3/genética , Regulación hacia Abajo , Predisposición Genética a la Enfermedad , Ventrículos Cardíacos/patología , Hipertrofia Ventricular Izquierda/genética , Hipertrofia Ventricular Izquierda/patología , Hipertrofia Ventricular Izquierda/fisiopatología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Miocitos Cardíacos/patología , Fenotipo , Disfunción Ventricular Izquierda/genética , Disfunción Ventricular Izquierda/patología , Disfunción Ventricular Izquierda/fisiopatología , Función Ventricular Izquierda
10.
Exp Physiol ; 103(5): 652-665, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29473235

RESUMEN

NEW FINDINGS: What is the central question of this study? Heart failure is associated with redistribution of L-type Ca2+ current (ICa ) away from the t-tubule membrane to the surface membrane of cardiac ventricular myocytes. However, the underlying mechanism and its dependence on severity of pathology (hypertrophy versus failure) are unclear. What is the main finding and its importance? Increasing severity of response to transverse aortic constriction, from hypertrophy to failure, was accompanied by graded loss of t-tubular ICa and loss of regulation of ICa by caveolin 3. Thus, the pathological loss of t-tubular ICa , which contributes to impaired excitation-contraction coupling and thereby cardiac function in vivo, appears to be attributable to loss of caveolin 3-dependent stimulation of t-tubular ICa . ABSTRACT: Previous work has shown redistribution of L-type Ca2+ current (ICa ) from the t-tubules to the surface membrane of rat ventricular myocytes after myocardial infarction. However, whether this occurs in all species and in response to other insults, the relationship of this redistribution to the severity of the pathology, and the underlying mechanism, are unknown. We have therefore investigated the response of mouse hearts and myocytes to pressure overload induced by transverse aortic constriction (TAC). Male C57BL/6 mice underwent TAC or equivalent sham operation 8 weeks before use. ICa and Ca2+ transients were measured in isolated myocytes, and expression of caveolin 3 (Cav3), junctophilin 2 (Jph2) and bridging integrator 1 (Bin1) was determined. C3SD peptide was used to disrupt Cav3 binding to its protein partners. Some animals showed cardiac hypertrophy in response to TAC with little evidence of heart failure, whereas others showed greater hypertrophy and pulmonary congestion. These graded changes were accompanied by graded cellular hypertrophy, t-tubule disruption, decreased expression of Jph2 and Cav3, and decreased t-tubular ICa density, with no change at the cell surface, and graded impairment of Ca2+ release at t-tubules. C3SD decreased ICa density in control but not in TAC myocytes. These data suggest that the graded changes in cardiac function and size that occur in response to TAC are paralleled by graded changes in cell structure and function, which will contribute to the impaired function observed in vivo. They also suggest that loss of t-tubular ICa is attributable to loss of Cav3-dependent stimulation of ICa .


Asunto(s)
Canales de Calcio Tipo L/metabolismo , Cardiomegalia/metabolismo , Caveolina 3/metabolismo , Insuficiencia Cardíaca/metabolismo , Animales , Señalización del Calcio/fisiología , Cardiomegalia/fisiopatología , Acoplamiento Excitación-Contracción/fisiología , Insuficiencia Cardíaca/fisiopatología , Ventrículos Cardíacos/metabolismo , Ventrículos Cardíacos/fisiopatología , Masculino , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Ratas
11.
J Mol Cell Cardiol ; 108: 1-7, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28483597

RESUMEN

Transverse-axial tubules (TTs) are key structures involved in cardiac excitation-contraction coupling and can become deranged in disease. Although optical measurement of TTs is frequently employed to assess TT abundance and regularity, TT dimensions are generally below the diffraction limit of optical microscopy so determination of tubule size is problematic. TT diameter was measured by labeling both local surface membrane area and volume with fluorescent probes (FM4-64 and calcein, respectively), correcting image asymmetry by image processing and using the relationship between surface area and volume for a geometric primitive. This method shows that TTs have a mean (±SEM) diameter of 356±18nm in rabbit and 169±15nm in mouse (p<0.001). Rabbit TT diameters were more variable than those of mouse (p<0.01) and the smallest TT detected was 41nm in mouse and the largest 695nm in rabbit. These estimates are consistent with TT diameters derived from the more limited sampling of high-pressure frozen samples by electron tomography (which examines only a small fraction of the cell volume). Other measures of TT abundance and geometry (such as volume, membrane fractions and direction) were also derived. On the physiological time scale of E-C coupling (milliseconds), the average TT electrical space constant is ~175µm in rabbit and ~120µm in mouse and is ~50% of the steady-state space constant. This is sufficient to ensure reasonable electrical uniformity across normal cells. The image processing strategy and shape-based 3D approach to feature quantification is also generally applicable to other problems in quantification of sub-cellular anatomy.


Asunto(s)
Ventrículos Cardíacos/citología , Procesamiento de Imagen Asistido por Computador , Microscopía Confocal , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Retículo Sarcoplasmático/metabolismo , Animales , Ratones , Miocitos Cardíacos/ultraestructura , Conejos , Retículo Sarcoplasmático/ultraestructura
12.
Circ Res ; 114(3): 412-20, 2014 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-24257462

RESUMEN

RATIONALE: In cardiac dyads, junctional Ca2+ directly controls the gating of the ryanodine receptors (RyRs), and is itself dominated by RyR-mediated Ca2+ release from the sarcoplasmic reticulum. Existing probes do not report such local Ca2+ signals because of probe diffusion, so a junction-targeted Ca2+ sensor should reveal new information on cardiac excitation-contraction coupling and its modification in disease states. OBJECTIVE: To investigate Ca2+ signaling in the nanoscopic space of cardiac dyads by targeting a new sensitive Ca2+ biosensor (GCaMP6f) to the junctional space. METHODS AND RESULTS: By fusing GCaMP6f to the N terminus of triadin 1 or junctin, GCaMP6f-triadin 1/junctin was targeted to dyadic junctions, where it colocalized with t-tubules and RyRs after adenovirus-mediated gene transfer. This membrane protein-tagged biosensor displayed ≈4× faster kinetics than native GCaMP6f. Confocal imaging revealed junctional Ca2+ transients (Ca2+ nanosparks) that were ≈50× smaller in volume than conventional Ca2+ sparks (measured with diffusible indicators). The presence of the biosensor did not disrupt normal Ca2+ signaling. Because no indicator diffusion occurred, the amplitude and timing of release measurements were improved, despite the small recording volume. We could also visualize coactivation of subclusters of RyRs within a single junctional region, as well as quarky Ca2+ release events. CONCLUSIONS: This new, targeted biosensor allows selective visualization and measurement of nanodomain Ca2+ dynamics in intact cells and can be used to give mechanistic insights into dyad RyR operation in health and in disease states such as when RyRs become orphaned.


Asunto(s)
Técnicas Biosensibles/tendencias , Señalización del Calcio/genética , Calcio/fisiología , Simulación de Dinámica Molecular/tendencias , Miocitos Cardíacos/fisiología , Nanotecnología/tendencias , Animales , Técnicas Biosensibles/métodos , Células Cultivadas , Corazón , Masculino , Miocitos Cardíacos/química , Nanotecnología/métodos , Ratas , Ratas Sprague-Dawley
13.
Clin Exp Pharmacol Physiol ; 43(1): 88-94, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26466753

RESUMEN

Recently, a family of guanine nucleotide exchange factors have been identified in many cell types as important effectors of cyclic adenosine 3',5'-monophospahte (cAMP) signalling that is independent of protein kinase A (PKA). In the heart, investigation of exchange protein directly activated by cAMP (Epac) has yielded conflicting results. Since cAMP is an important regulator of cardiac contractility, this study aimed to examine whether Epac activation modulates excitation-contraction coupling in ventricular preparations from rat hearts. The study used 8-(4-chlorophenylthio)-2'-O-methyladenosine-3', 5'-cyclic monophosphate (cpTOME), an analogue of cAMP that activates Epac, but not PKA. In isolated myocytes, cpTOME increased Ca(2+) spark frequency from about 7 to 32/100 µm(3)/s (n = 10), P = 0.05 with a reduction in the peak amplitude of the sparks. Simultaneous measurements of intracellular Ca(2+) and isometric force in multicellular trabeculae (n = 7, 1.5 mmol/L [Ca(2+)]o) revealed no effect of Epac activation on either the amplitude of Ca(2+) transients (Control 0.7 ± 0.1 vs cpTOME 0.7 ± 0.1; 340/380 fura-2 ratio, P = 0.35) or on peak stress (Control 24 ± 5 mN/mm(2) vs cpTOME 23 ± 5 mN/mm(2), P = 0.20). However, an effect of Epac in trabeculae was unmasked by lowering extracellular [Ca(2+)]o. In these depotentiated trabeculae, activation of the Epac pathway increased myofilament Ca(2+) sensitivity, an effect that was blocked by addition of KN-93, a Ca(2+)/calmodulin-dependent protein kinase II (CaMK-II) inhibitor. This study suggests that Epac activation may be a useful therapeutic target to increase the strength of contraction during low inotropic states.


Asunto(s)
Calcio/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Depresión Sináptica a Largo Plazo , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Miofibrillas/metabolismo , Animales , Acoplamiento Excitación-Contracción , Ventrículos Cardíacos/citología , Ventrículos Cardíacos/metabolismo , Miocitos Cardíacos/fisiología , Ratas
14.
J Mol Cell Cardiol ; 86: 23-31, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26103619

RESUMEN

In mammalian cardiac ventricular myocytes, Ca influx and release occur predominantly at t-tubules, ensuring synchronous Ca release throughout the cell. Heart failure is associated with disrupted t-tubule structure, but its effect on t-tubule function is less clear. We therefore investigated Ca influx and release at the t-tubules of ventricular myocytes isolated from rat hearts ~18weeks after coronary artery ligation (CAL) or corresponding Sham operation. L-type Ca current (ICa) was recorded using the whole-cell voltage-clamp technique in intact and detubulated myocytes; Ca release at t-tubules was monitored using confocal microscopy with voltage- and Ca-sensitive fluorophores. CAL was associated with cardiac and cellular hypertrophy, decreased ejection fraction, disruption of t-tubule structure and a smaller, slower Ca transient, but no change in ryanodine receptor distribution, L-type Ca channel expression, or ICa density. In Sham myocytes, ICa was located predominantly at the t-tubules, while in CAL myocytes, it was uniformly distributed between the t-tubule and surface membranes. Inhibition of protein kinase A with H-89 caused a greater decrease of t-tubular ICa in CAL than in Sham myocytes; in the presence of H-89, t-tubular ICa density was smaller in CAL than in Sham myocytes. The smaller t-tubular ICa in CAL myocytes was accompanied by increased latency and heterogeneity of SR Ca release at t-tubules, which could be mimicked by decreasing ICa using nifedipine. These data show that CAL decreases t-tubular ICa via a PKA-independent mechanism, thereby impairing Ca release at t-tubules and contributing to the altered excitation-contraction coupling observed in heart failure.


Asunto(s)
Canales de Calcio Tipo L/biosíntesis , Calcio/metabolismo , Insuficiencia Cardíaca/metabolismo , Ventrículos Cardíacos/metabolismo , Animales , Canales de Calcio Tipo L/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/antagonistas & inhibidores , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Insuficiencia Cardíaca/patología , Ventrículos Cardíacos/patología , Humanos , Isoquinolinas/administración & dosificación , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Técnicas de Placa-Clamp , Ratas , Sulfonamidas/administración & dosificación
15.
J Mol Cell Cardiol ; 84: 170-8, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25953258

RESUMEN

Evidence from animal models suggest that t-tubule changes may play an important role in the contractile deficit associated with heart failure. However samples are usually taken at random with no regard as to regional variability present in failing hearts which leads to uncertainty in the relationship between contractile performance and possible t-tubule derangement. Regional contraction in human hearts was measured by tagged cine MRI and model fitting. At transplant, failing hearts were biopsy sampled in identified regions and immunocytochemistry was used to label t-tubules and sarcomeric z-lines. Computer image analysis was used to assess 5 different unbiased measures of t-tubule structure/organization. In regions of failing hearts that showed good contractile performance, t-tubule organization was similar to that seen in normal hearts, with worsening structure correlating with the loss of regional contractile performance. Statistical analysis showed that t-tubule direction was most highly correlated with local contractile performance, followed by the amplitude of the sarcomeric peak in the Fourier transform of the t-tubule image. Other area based measures were less well correlated. We conclude that regional contractile performance in failing human hearts is strongly correlated with the local t-tubule organization. Cluster tree analysis with a functional definition of failing contraction strength allowed a pathological definition of 't-tubule disease'. The regional variability in contractile performance and cellular structure is a confounding issue for analysis of samples taken from failing human hearts, although this may be overcome with regional analysis by using tagged cMRI and biopsy mapping.


Asunto(s)
Cardiomiopatía Dilatada/patología , Cardiomiopatía Dilatada/fisiopatología , Contracción Miocárdica , Miocitos Cardíacos/patología , Adulto , Cardiomiopatía Dilatada/complicaciones , Femenino , Insuficiencia Cardíaca/complicaciones , Insuficiencia Cardíaca/patología , Insuficiencia Cardíaca/fisiopatología , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Cinemagnética , Masculino , Persona de Mediana Edad , Modelos Cardiovasculares , Miocitos Cardíacos/metabolismo , Sarcómeros/metabolismo , Aglutininas del Germen de Trigo/metabolismo , Adulto Joven
16.
J Physiol ; 593(6): 1347-60, 2015 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-25772290

RESUMEN

This paper is the second of a series of three reviews published in this issue resulting from the University of California Davis Cardiovascular Symposium 2014: Systems approach to understanding cardiac excitation-contraction coupling and arrhythmias: Na(+) channel and Na(+) transport. The goal of the symposium was to bring together experts in the field to discuss points of consensus and controversy on the topic of sodium in the heart. The present review focuses on Na(+) channel function and regulation, Na(+) channel structure and function, and Na(+) channel trafficking, sequestration and complexing.


Asunto(s)
Miocitos Cardíacos/metabolismo , Canales de Sodio/metabolismo , Potenciales de Acción , Secuencia de Aminoácidos , Animales , Congresos como Asunto , Humanos , Datos de Secuencia Molecular , Miocitos Cardíacos/efectos de los fármacos , Transporte de Proteínas , Bloqueadores de los Canales de Sodio/farmacología , Canales de Sodio/química
17.
PLoS Comput Biol ; 9(2): e1002931, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23468614

RESUMEN

The release of Ca from intracellular stores is key to cardiac muscle function; however, the molecular control of intracellular Ca release remains unclear. Depletion of the intracellular Ca store (sarcoplasmic reticulum, SR) may play an important role, but the ability to measure local SR Ca with fluorescent Ca indicators is limited by the microscope optical resolution and properties of the indicator. This leads to an uncertain degree of spatio-temporal blurring, which is not easily corrected (by deconvolution methods) due to the low signal-to-noise ratio of the recorded signals. In this study, a 3D computer model was constructed to calculate local Ca fluxes and consequent dye signals, which were then blurred by a measured microscope point spread function. Parameter fitting was employed to adjust a release basis function until the model output fitted recorded (2D) Ca spark data. This 'forward method' allowed us to obtain estimates of the time-course of Ca release flux and depletion within the sub-microscopic local SR associated with a number of Ca sparks. While variability in focal position relative to Ca spark sites causes more out-of-focus events to have smaller calculated fluxes (and less SR depletion), the average SR depletion was to 20±10% (s.d.) of the resting level. This focus problem implies that the actual SR depletion is likely to be larger and the five largest depletions analyzed were to 8±6% of the resting level. This profound depletion limits SR release flux during a Ca spark, which peaked at 8±3 pA and declined with a half time of 7±2 ms. By comparison, RyR open probability declined more slowly, suggesting release termination is dominated by neither SR Ca depletion nor intrinsic RyR gating, but results from an interaction of these processes.


Asunto(s)
Señalización del Calcio/fisiología , Calcio/análisis , Modelos Biológicos , Animales , Calcio/química , Calcio/metabolismo , Simulación por Computador , Colorantes Fluorescentes/análisis , Colorantes Fluorescentes/química , Colorantes Fluorescentes/metabolismo , Espacio Intracelular/química , Espacio Intracelular/metabolismo , Masculino , Microscopía Fluorescente , Miocitos Cardíacos/química , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Ratas , Ratas Wistar , Retículo Sarcoplasmático/química , Retículo Sarcoplasmático/metabolismo
18.
Cells ; 13(17)2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39273026

RESUMEN

The atrioventricular node (AVN) is a key component of the cardiac conduction system and takes over pacemaking of the ventricles if the sinoatrial node fails. IP3 (inositol 1,4,5 trisphosphate) can modulate excitability of myocytes from other regions of the heart, but it is not known whether IP3 receptor (IP3-R) activation modulates AVN cell pacemaking. Consequently, this study investigated effects of IP3 on spontaneous action potentials (APs) from AVN cells isolated from rabbit hearts. Immunohistochemistry and confocal imaging demonstrated the presence of IP3-R2 in isolated AVN cells, with partial overlap with RyR2 ryanodine receptors seen in co-labelling experiments. In whole-cell recordings at physiological temperature, application of 10 µM membrane-permeant Bt3-(1,4,5)IP3-AM accelerated spontaneous AP rate and increased diastolic depolarization rate, without direct effects on ICa,L, IKr, If or INCX. By contrast, application via the patch pipette of 5 µM of the IP3-R inhibitor xestospongin C led to a slowing in spontaneous AP rate and prevented 10 µM Bt3-(1,4,5)IP3-AM application from increasing the AP rate. UV excitation of AVN cells loaded with caged-IP3 led to an acceleration in AP rate, the magnitude of which increased with the extent of UV excitation. 2-APB slowed spontaneous AP rate, consistent with a role for constitutive IP3-R activity; however, it was also found to inhibit ICa,L and IKr, confounding its use for studying IP3-R. Under AP voltage clamp, UV excitation of AVN cells loaded with caged IP3 activated an inward current during diastolic depolarization. Collectively, these results demonstrate that IP3 can modulate AVN cell pacemaking rate.


Asunto(s)
Potenciales de Acción , Nodo Atrioventricular , Receptores de Inositol 1,4,5-Trifosfato , Inositol 1,4,5-Trifosfato , Miocitos Cardíacos , Animales , Conejos , Potenciales de Acción/efectos de los fármacos , Nodo Atrioventricular/efectos de los fármacos , Nodo Atrioventricular/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Inositol 1,4,5-Trifosfato/metabolismo , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Oxazoles/farmacología , Masculino
19.
J Mol Cell Cardiol ; 63: 37-46, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23880608

RESUMEN

When cardiac muscle is stretched, there is an initial inotropic response that coincides with the stretch followed by a slower increase in twitch force that develops over several minutes (the "slow force response", or SFR). Unlike the initial response to stretch, the SFR is produced by an increase in Ca(2+) transient amplitude, but the cellular mechanisms that give rise to the increased transients are still debated. We have examined the relationship between the SFR, intracellular [Ca(2+)] and the inotropic state of right ventricular trabeculae from rat hearts at 37°C. The magnitude of the SFR varied with [Ca(2+)]o and stimulation frequency, so that the SFR was greatest for conditions associated with a reduced SR Ca(2+) content. The SFR was not blocked by the AT1 receptor blocker losartan, but was reduced by SN-6, an inhibitor of reverse mode Na(+)/Ca(2+)-exchange (NCX). The Na(+)/H(+)-exchange (NHE) inhibitor HOE642 had no effect in HCO3(-)-buffered solutions, but blocked 50% of the SFR in HCO3(-)-free solution. Inhibition of HCO3(-) transport by DIDS increased the SFR and made it sensitive to HOE642. The addition of cross-bridge cycle inhibitors (20mM BDM or 20µM blebbistatin) to the superfusate reduced the SFR as monitored by changes in Ca(2+). In HCO3(-)-free conditions, the SFR was associated with a slow acidification that was inhibited by BDM, and by stopping electrical stimulation. These results can be explained by stretch increasing metabolic demand and stimulating Na(+) entry via both NHE and the Na(+)/HCO3(-) transporters. This mechanism provides a novel link between inotropic state and stretch, as well as a way for the cell to compensate for increased acid load. The feedback mechanism between force and Ca(2+) transient amplitude that we describe is also limited by the degree of SR Ca(2+) load.


Asunto(s)
Calcio/metabolismo , Corazón/fisiología , Miocardio/metabolismo , Retículo Sarcoplasmático/metabolismo , Estrés Mecánico , Angiotensina II/farmacología , Animales , Bicarbonatos/metabolismo , Transporte Biológico Activo , Espacio Extracelular/metabolismo , Corazón/efectos de los fármacos , Hidrógeno/metabolismo , Concentración de Iones de Hidrógeno , Contracción Miocárdica/efectos de los fármacos , Contracción Miocárdica/fisiología , Estimulación Física , Ratas , Sodio/metabolismo
20.
Cardiovasc Diabetol ; 12: 123, 2013 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-23981320

RESUMEN

BACKGROUND: Intracellular calcium (Ca²âº) coordinates the cardiac contraction cycle and is dysregulated in diabetic cardiomyopathy. Treatment with triethylenetetramine (TETA), a divalent-copper-selective chelator, improves cardiac structure and function in patients and rats with diabetic cardiomyopathy, but the molecular basis of this action is uncertain. Here, we used TETA to probe potential linkages between left-ventricular (LV) copper and Ca²âº homeostasis, and cardiac function and structure in diabetic cardiomyopathy. METHODS: We treated streptozotocin-diabetic rats with a TETA-dosage known to ameliorate LV hypertrophy in patients with diabetic cardiomyopathy. Drug treatment was begun either one (preventative protocol) or eight (restorative protocol) weeks after diabetes induction and continued thereafter for seven or eight weeks, respectively. Total copper content of the LV wall was determined, and simultaneous measurements of intracellular calcium concentrations and isometric contraction were made in LV trabeculae isolated from control, diabetic and TETA-treated diabetic rats. RESULTS: Total myocardial copper levels became deficient in untreated diabetes but were normalized by TETA-treatment. Cardiac contractility was markedly depressed by diabetes but TETA prevented this effect. Neither diabetes nor TETA exerted significant effects on peak or resting [Ca²âº](i). However, diabetic rats showed extensive cardiac remodelling and decreased myofibrillar calcium sensitivity, consistent with observed increases in phosphorylation of troponin I, whereas these changes were all prevented by TETA. CONCLUSIONS: Diabetes causes cardiomyopathy through a copper-mediated mechanism that incorporates myocardial copper deficiency, whereas TETA treatment prevents this response and maintains the integrity of cardiac structure and myofibrillar calcium sensitivity. Altered calcium homeostasis may not be the primary defect in diabetic cardiomyopathy. Rather, a newly-described copper-mediated mechanism may cause this disease.


Asunto(s)
Cardiotónicos/farmacología , Quelantes/farmacología , Cobre/metabolismo , Diabetes Mellitus Experimental/tratamiento farmacológico , Cardiomiopatías Diabéticas/prevención & control , Miocardio/metabolismo , Trientina/farmacología , Animales , Calcio/metabolismo , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/fisiopatología , Cardiomiopatías Diabéticas/etiología , Cardiomiopatías Diabéticas/metabolismo , Cardiomiopatías Diabéticas/fisiopatología , Frecuencia Cardíaca/efectos de los fármacos , Hipertrofia Ventricular Izquierda/etiología , Hipertrofia Ventricular Izquierda/metabolismo , Hipertrofia Ventricular Izquierda/prevención & control , Contracción Isométrica/efectos de los fármacos , Masculino , Contracción Miocárdica/efectos de los fármacos , Miofibrillas/efectos de los fármacos , Miofibrillas/metabolismo , Fosforilación , Ratas , Ratas Wistar , Factores de Tiempo , Troponina I/metabolismo , Función Ventricular Izquierda/efectos de los fármacos , Remodelación Ventricular/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA