Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sensors (Basel) ; 20(5)2020 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-32121407

RESUMEN

Continuous progress of nanocommunications and nano-networking is opening the door to the development of innovative yet unimaginable services, with a special focus on medical applications. Among several nano-network topologies, flow-guided nanocommunication networks have recently emerged as a promising solution to monitoring, gathering information, and data communication inside the human body. In particular, flow-guided nano-networks display a number of specific characteristics, such as the type of nodes comprising the network or the ability of a nano-node to transmit successfully, which significantly differentiates them from other types of networks, both at the nano and larger scales. This paper presents the first analytical study on the behavior of these networks, with the objective of evaluating their metrics mathematically. To this end, a theoretical framework of the flow-guided nano-networks is developed and an analytical model derived. The main results reveal that, due to frame collisions, there is an optimal number of nano-nodes for any flow-guided network, which, as a consequence, limits the maximum achievable throughput. Finally, the analytical results obtained are validated through simulations and are further discussed.

2.
Sensors (Basel) ; 18(5)2018 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-29702581

RESUMEN

Electromagnetic nanocommunications, understood as the communication between electronic nanoscale devices through electromagnetic waves in the terahertz band, has attracted increasing attention in recent years. In this regard, several solutions have already been proposed. However, many of them do not sufficiently capture the significance of the limitations in nanodevice energy-gathering and storing capacity. In this paper, we address key factors affecting the energy consumption of nanodevices, highlighting the effect of the communication scheme employed. Then, we also examine how nanodevices are powered, focusing on the main parameters governing the powering nanosystem. Different mathematical expressions are derived to analyze the impact of these parameters on its performance. Based on these expressions, the functionality of a nanogenerator is evaluated to gain insight into the conditions under which a wireless nanosensor network (WNSN) is viable from the energetic point of view. The results reveal that a micrometer-sized piezoelectric system in high-lossy environments (exceeding 100 dB/mm) becomes inoperative for transmission distances over 1.5 mm by its inability to harvest and store the amount of energy required to overcome the path loss.

3.
Sensors (Basel) ; 16(12)2016 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-27973430

RESUMEN

Nanotechnology is an emerging scientific area whose advances, among many others, have a positive direct impact on the miniaturization of electronics. This unique technology enables the possibility to design and build electronic components as well as complete devices (called nanomachines or nanodevices) at the nano scale. A nanodevice is expected to be an essential element able to operate in a nanonetwork, where a huge number of them would coordinate to acquire data, process the information gathered, and wirelessly transmit those data to end-points providing innovative services in many key scenarios, such as the human body or the environment. This paper is aimed at studying the feasibility of this type of device by carefully examining their main component parts, namely the nanoprocessor, nanomemory, nanoantenna, and nanogenerator. To this end, a thorough state-of-the-art review is conveyed to discuss, substantiate, and select the most suitable current technology (commercial or pre-commercial) for each component. Then, we further contribute by developing a complete conceptual nanodevice layout taking into consideration its ultra-small size (similar to a blood cell) and its very restricted capabilities (e.g., processing, memory storage, telecommunication, and energy management). The required resources as well as the power consumption are realistically estimated.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA