Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 137
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
PLoS Biol ; 22(2): e3002518, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38386616

RESUMEN

Neurons in the subthalamic nucleus (STN) become hyperactive following nerve injury and promote pain-related responses in mice. Considering that the anterior cingulate cortex (ACC) is involved in pain and emotion processing and projects to the STN, we hypothesize that ACC neurons may contribute to hyperactivity in STN neurons in chronic pain. In the present study, we showed that ACC neurons enhanced activity in response to noxious stimuli and to alterations in emotional states and became hyperactive in chronic pain state established by spared nerve injury of the sciatic nerve (SNI) in mice. In naïve mice, STN neurons were activated by noxious stimuli, but not by alterations in emotional states. Pain responses in STN neurons were attenuated in both naïve and SNI mice when ACC neurons were inhibited. Furthermore, optogenetic activation of the ACC-STN pathway induced bilateral hyperalgesia and depression-like behaviors in naive mice; conversely, inhibition of this pathway is sufficient to attenuate hyperalgesia and depression-like behaviors in SNI mice and naïve mice subjected to stimulation of STN neurons. Finally, mitigation of pain-like and depression-like behaviors in SNI mice by inhibition of the ACC-STN projection was eliminated by activation of STN neurons. Our results demonstrate that hyperactivity in the ACC-STN pathway may be an important pathophysiology in comorbid chronic pain and depression. Thus, the ACC-STN pathway may be an intervention target for the treatment of the comorbid chronic pain and depression.


Asunto(s)
Dolor Crónico , Ratones , Masculino , Animales , Giro del Cíngulo/fisiología , Hiperalgesia , Depresión , Neuronas/fisiología
2.
J Neurosci ; 44(4)2024 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-38124016

RESUMEN

The dorsal raphe nucleus (DRN) is an important nucleus in pain regulation. However, the underlying neural pathway and the function of specific cell types remain unclear. Here, we report a previously unrecognized ascending facilitation pathway, the DRN to the mesoaccumbal dopamine (DA) circuit, for regulating pain. Chronic pain increased the activity of DRN glutamatergic, but not serotonergic, neurons projecting to the ventral tegmental area (VTA) (DRNGlu-VTA) in male mice. The optogenetic activation of DRNGlu-VTA circuit induced a pain-like response in naive male mice, and its inhibition produced an analgesic effect in male mice with neuropathic pain. Furthermore, we discovered that DRN ascending pathway regulated pain through strengthened excitatory transmission onto the VTA DA neurons projecting to the ventral part of nucleus accumbens medial shell (vNAcMed), thereby activated the mesoaccumbal DA neurons. Correspondingly, optogenetic manipulation of this three-node pathway bilaterally regulated pain behaviors. These findings identified a DRN ascending excitatory pathway that is crucial for pain sensory processing, which can potentially be exploited toward targeting pain disorders.


Asunto(s)
Núcleo Dorsal del Rafe , Área Tegmental Ventral , Ratones , Masculino , Animales , Núcleo Dorsal del Rafe/fisiología , Área Tegmental Ventral/fisiología , Neuronas Dopaminérgicas/fisiología , Núcleo Accumbens , Dolor/metabolismo
3.
J Neurosci ; 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39019613

RESUMEN

Although anesthesia provides favorable conditions for surgical procedures, recent studies have revealed that the brain remains active in processing noxious signals even during anesthesia. However, whether and how these responses affect the anesthesia effect remains unclear. The ventrolateral periaqueductal gray (vlPAG), a crucial hub for pain regulation, also plays an essential role in controlling general anesthesia. Hence, it was hypothesized that the vlPAG may be involved in the regulation of general anesthesia by noxious stimuli. Here, we found that acute noxious stimuli, including capsaicin-induced inflammatory pain, acetic acid-induced visceral pain, and incision-induced surgical pain, significantly delayed recovery from sevoflurane anesthesia in male mice, whereas this effect was absent in the spared nerve injury-induced chronic pain. Pre-treatment with peripheral analgesics could prevent the delayed recovery induced by acute nociception. Furthermore, we found that acute noxious stimuli, induced by the injection of capsaicin under sevoflurane anesthesia, increased c-Fos expression and activity in the GABAergic neurons of the ventrolateral periaqueductal gray (vlPAGGABA). Specific re-activation of capsaicin-activated vlPAGGABA neurons mimicked the effect of capsaicin and its chemogenetic inhibition prevented the delayed recovery from anesthesia induced by capsaicin. Finally, we revealed that the vlPAGGABA neurons regulated the recovery from anesthesia through the inhibition of ventral tegmental area dopaminergic neuronal activity, thus decreasing dopamine release and activation of dopamine D1-like receptors in the brain. These findings reveal a novel, cell- and circuit-based mechanism for regulating anesthesia recovery by nociception and it is important to provide new insights for guiding the management of the anesthesia recovery period.Significance Statement There is evidence that the brain still processes pain signals during anesthesia. However, the significance and mechanisms of this phenomenon are poorly understood. Here, utilizing various pain models under anesthesia and integrating multiple techniques, the current study found that acute, but not chronic, ongoing noxious stimuli delayed the recovery from sevoflurane anesthesia. Furthermore, we identified the vlPAGGABA-VTA circuit as a critical target for mediating this effect by inhibiting the VTA dopaminergic neurons, reducing dopamine release, and decreasing the activation of dopamine D1-like receptors in the brain. This study presents the initial finding that the absence of pain perception under anesthesia does not equate to the absence of harm, offering a new perspective on guiding the administration of anesthesia medications.

4.
J Neurosci ; 44(13)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38378273

RESUMEN

Patients with chronic pain often develop comorbid depressive symptoms, which makes the pain symptoms more complicated and refractory. However, the underlying mechanisms are poorly known. Here, in a repeated complete Freund's adjuvant (CFA) male mouse model, we reported a specific regulatory role of the paraventricular thalamic nucleus (PVT) glutamatergic neurons, particularly the anterior PVT (PVA) neurons, in mediating chronic pain and depression comorbidity (CDC). Our c-Fos protein staining observed increased PVA neuronal activity in CFA-CDC mice. In wild-type mice, chemogenetic activation of PVA glutamatergic neurons was sufficient to decrease the 50% paw withdrawal thresholds (50% PWTs), while depressive-like behaviors evaluated with immobile time in tail suspension test (TST) and forced swim test (FST) could only be achieved by repeated chemogenetic activation. Chemogenetic inhibition of PVA glutamatergic neurons reversed the decreased 50% PWTs in CFA mice without depressive-like symptoms and the increased TST and FST immobility in CFA-CDC mice. Surprisingly, in CFA-CDC mice, chemogenetically inhibiting PVA glutamatergic neurons failed to reverse the decrease of 50% PWTs, which could be restored by rapid-onset antidepressant S-ketamine. Further behavioral tests in chronic restraint stress mice and CFA pain mice indicated that PVA glutamatergic neuron inhibition and S-ketamine independently alleviate sensory and affective pain. Molecular profiling and pharmacological studies revealed the 5-hydroxytryptamine receptor 1D (Htr1d) in CFA pain-related PVT engram neurons as a potential target for treating CDC. These findings identified novel CDC neuronal and molecular mechanisms in the PVT and provided insight into the complicated pain neuropathology under a comorbid state with depression and related drug development.


Asunto(s)
Dolor Crónico , Ketamina , Humanos , Ratones , Masculino , Animales , Dolor Crónico/metabolismo , Depresión/tratamiento farmacológico , Tálamo , Neuronas/metabolismo , Comorbilidad
5.
Mol Psychiatry ; 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38454083

RESUMEN

Both peripheral and central corticotropin-releasing factor (CRF) systems have been implicated in regulating pain sensation. However, compared with the peripheral, the mechanisms underlying central CRF system in pain modulation have not yet been elucidated, especially at the neural circuit level. The corticoaccumbal circuit, a structure rich in CRF receptors and CRF-positive neurons, plays an important role in behavioral responses to stressors including nociceptive stimuli. The present study was designed to investigate whether and how CRF signaling in this circuit regulated pain sensation under physiological and pathological pain conditions. Our studies employed the viral tracing and circuit-, and cell-specific electrophysiological methods to label the CRF-containing circuit from the medial prefrontal cortex to the nucleus accumbens shell (mPFCCRF-NAcS) and record its neuronal propriety. Combining optogenetic and chemogenetic manipulation, neuropharmacological methods, and behavioral tests, we were able to precisely manipulate this circuit and depict its role in regulation of pain sensation. The current study found that the CRF signaling in the NAc shell (NAcS), but not NAc core, was necessary and sufficient for the regulation of pain sensation under physiological and pathological pain conditions. This process was involved in the CRF-mediated enhancement of excitatory synaptic transmission in the NAcS. Furthermore, we demonstrated that the mPFCCRF neurons monosynaptically connected with the NAcS neurons. Chronic pain increased the protein level of CRF in NAcS, and then maintained the persistent NAcS neuronal hyperactivity through enhancement of this monosynaptic excitatory connection, and thus sustained chronic pain behavior. These findings reveal a novel cell- and circuit-based mechanistic link between chronic pain and the mPFCCRF → NAcS circuit and provide a potential new therapeutic target for chronic pain.

6.
J Neurosci ; 43(4): 526-539, 2023 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-36283831

RESUMEN

The transmembrane protein TMEM206 was recently identified as the molecular basis of the extracellular proton-activated Cl- channel (PAC), which plays an essential role in neuronal death in ischemia-reperfusion. The PAC channel is activated by extracellular acid, but the proton-sensitive mechanism remains unclear, although different acid-sensitive pockets have been suggested based on the cryo-EM structure of the human PAC (hPAC) channel. In the present study, we firstly identified two acidic amino acid residues that removed the pH-dependent activation of the hPAC channel by neutralization all the conservative negative charged residues located in the extracellular domain of the hPAC channel and some positively charged residues at the hotspot combined with two-electrode voltage-clamp (TEVC) recording in the Xenopus oocytes system. Double-mutant cycle analysis and double cysteine mutant of these two residues proved that these two residues cooperatively form a proton-sensitive site. In addition, we found that chloral hydrate activates the hPAC channel depending on the normal pH sensitivity of the hPAC channel. Furthermore, the PAC channel knock-out (KO) male mice (C57BL/6J) resist chloral hydrate-induced sedation and hypnosis. Our study provides a molecular basis for understanding the proton-dependent activation mechanism of the hPAC channel and a novel drug target of chloral hydrate.SIGNIFICANCE STATEMENT Proton-activated Cl- channel (PAC) channels are widely distributed in the nervous system and play a vital pathophysiological role in ischemia and endosomal acidification. The main discovery of this paper is that we identified the proton activation mechanism of the human proton-activated chloride channel (hPAC). Intriguingly, we also found that anesthetic chloral hydrate can activate the hPAC channel in a pH-dependent manner. We found that the chloral hydrate activates the hPAC channel and needs the integrity of the pH-sensitive site. In addition, the PAC channel knock-out (KO) mice are resistant to chloral hydrate-induced anesthesia. The study on PAC channels' pH activation mechanism enables us to better understand PAC's biophysical mechanism and provides a novel target of chloral hydrate.


Asunto(s)
Hidrato de Cloral , Canales de Cloruro , Ratones , Animales , Masculino , Humanos , Hidrato de Cloral/farmacología , Canales de Cloruro/genética , Canales de Cloruro/metabolismo , Protones , Cloruros/metabolismo , Ratones Endogámicos C57BL
7.
J Neurosci ; 43(24): 4525-4540, 2023 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-37188517

RESUMEN

Our recent study demonstrated the critical role of the mesolimbic dopamine (DA) circuit and its brain-derived neurotropic factor (BDNF) signaling in mediating neuropathic pain. The present study aims to investigate the functional role of GABAergic inputs from the lateral hypothalamus (LH) to the ventral tegmental area (VTA; LHGABA→VTA) in regulating the mesolimbic DA circuit and its BDNF signaling underlying physiological and pathologic pain. We demonstrated that optogenetic manipulation of the LHGABA→VTA projection bidirectionally regulated pain sensation in naive male mice. Optogenetic inhibition of this projection generated an analgesic effect in mice with pathologic pain induced by chronic constrictive injury (CCI) of the sciatic nerve and persistent inflammatory pain by complete Freund's adjuvant (CFA). Trans-synaptic viral tracing revealed a monosynaptic connection between LH GABAergic neurons and VTA GABAergic neurons. Functionally, in vivo calcium/neurotransmitter imaging showed an increased DA neuronal activity, decreased GABAergic neuronal activity in the VTA, and increased dopamine release in the NAc, in response to optogenetic activation of the LHGABA→VTA projection. Furthermore, repeated activation of the LHGABA→VTA projection was sufficient to increase the expression of mesolimbic BDNF protein, an effect seen in mice with neuropathic pain. Inhibition of this circuit induced a decrease in mesolimbic BDNF expression in CCI mice. Interestingly, the pain behaviors induced by activation of the LHGABA→VTA projection could be prevented by pretreatment with intra-NAc administration of ANA-12, a TrkB receptor antagonist. These results demonstrated that LHGABA→VTA projection regulated pain sensation by targeting local GABAergic interneurons to disinhibit the mesolimbic DA circuit and regulating accumbal BDNF release.SIGNIFICANCE STATEMENT The mesolimbic dopamine (DA) system and its brain-derived neurotropic factor (BDNF) signaling have been implicated in pain regulation, however, underlying mechanisms remain poorly understood. The lateral hypothalamus (LH) sends different afferent fibers into and strongly influences the function of mesolimbic DA system. Here, utilizing cell type- and projection-specific viral tracing, optogenetics, in vivo calcium and neurotransmitter imaging, our current study identified the LHGABA→VTA projection as a novel neural circuit for pain regulation, possibly by targeting the VTA GABA-ergic neurons to disinhibit mesolimbic pathway-specific DA release and BDNF signaling. This study provides a better understanding of the role of the LH and mesolimbic DA system in physiological and pathological pain.


Asunto(s)
Dopamina , Neuralgia , Ratones , Masculino , Animales , Dopamina/metabolismo , Área Hipotalámica Lateral/fisiología , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Calcio/metabolismo , Área Tegmental Ventral/fisiología , Neuronas GABAérgicas/fisiología , Ácido gamma-Aminobutírico/metabolismo , Neuralgia/metabolismo , Sensación , Núcleo Accumbens/fisiología
8.
J Neurosci ; 43(17): 3009-3027, 2023 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-36898834

RESUMEN

RNA N4-acetylcytidine (ac4C) modification is increasingly recognized as an important layer of gene regulation; however, the involvement of ac4C in pain regulation has not been studied. Here, we report that N-acetyltransferase 10 protein (NAT10; the only known ac4C "writer") contributes to the induction and development of neuropathic pain in an ac4C-dependent manner. Peripheral nerve injury increases the levels of NAT10 expression and overall ac4C in injured dorsal root ganglia (DRGs). This upregulation is triggered by the activation of upstream transcription factor 1 (USF1), a transcription factor that binds to the Nat10 promoter. Knock-down or genetic deletion of NAT10 in the DRG abolishes the gain of ac4C sites in Syt9 mRNA and the augmentation of SYT9 protein, resulting in a marked antinociceptive effect in nerve-injured male mice. Conversely, mimicking NAT10 upregulation in the absence of injury evokes the elevation of Syt9 ac4C and SYT9 protein and induces the genesis of neuropathic-pain-like behaviors. These findings demonstrate that USF1-governed NAT10 regulates neuropathic pain by targeting Syt9 ac4C in peripheral nociceptive sensory neurons. Our findings establish NAT10 as a critical endogenous initiator of nociceptive behavior and a promising new target for treating neuropathic pain.SIGNIFICANCE STATEMENT The cytidine N4-acetylcytidine (ac4C), a new epigenetic RNA modification, is crucial for the translation and stability of mRNA, but its role for chronic pain remains unclear. Here, we demonstrate that N-acetyltransferase 10 (NAT10) acts as ac4C N-acetyltransferase and plays an important role in the development and maintenance of neuropathic pain. NAT10 was upregulated via the activation of the transcription factor upstream transcription factor 1 (USF1) in the injured dorsal root ganglion (DRG) after peripheral nerve injury. Since pharmacological or genetic deleting NAT10 in the DRG attenuated the nerve injury-induced nociceptive hypersensitivities partially through suppressing Syt9 mRNA ac4C and stabilizing SYT9 protein level, NAT10 may serve as an effective and novel therapeutic target for neuropathic pain.


Asunto(s)
Neuralgia , Traumatismos de los Nervios Periféricos , Animales , Masculino , Ratones , Acetiltransferasas/metabolismo , Citidina/farmacología , Citidina/genética , Citidina/metabolismo , Ganglios Espinales/metabolismo , Neuralgia/etiología , Neuralgia/metabolismo , Traumatismos de los Nervios Periféricos/complicaciones , Traumatismos de los Nervios Periféricos/metabolismo , ARN , ARN Mensajero/metabolismo , Células Receptoras Sensoriales/metabolismo , Factores de Transcripción/metabolismo
9.
J Neurosci ; 43(49): 8547-8561, 2023 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-37802656

RESUMEN

Dysfunctional gene expression in nociceptive pathways plays a critical role in the development and maintenance of neuropathic pain. Super enhancers (SEs), composed of a large cluster of transcriptional enhancers, are emerging as new players in the regulation of gene expression. However, whether SEs participate in nociceptive responses remains unknown. Here, we report a spinal-specific SE (SS-SE) that regulates chronic constriction injury (CCI)-induced neuropathic pain by driving Ntmt1 and Prrx2 transcription in dorsal horn neurons. Peripheral nerve injury significantly enhanced the activity of SS-SE and increased the expression of NTMT1 and PRRX2 in the dorsal horn of male mice in a bromodomain-containing protein 4 (BRD4)-dependent manner. Both intrathecal administration of a pharmacological BRD4 inhibitor JQ1 and CRISPR-Cas9-mediated SE deletion abolished the increased NTMT1 and PRRX2 in CCI mice and attenuated their nociceptive hypersensitivities. Furthermore, knocking down Ntmt1 or Prrx2 with siRNA suppressed the injury-induced elevation of phosphorylated extracellular-signal-regulated kinase (p-ERK) and glial fibrillary acidic protein (GFAP) expression in the dorsal horn and alleviated neuropathic pain behaviors. Mimicking the increase in spinal Ntmt1 or Prrx2 in naive mice increased p-ERK and GFAP expression and led to the genesis of neuropathic pain-like behavior. These results redefine our understanding of the regulation of pain-related genes and demonstrate that BRD4-driven increases in SS-SE activity is responsible for the genesis of neuropathic pain through the governance of NTMT1 and PRRX2 expression in dorsal horn neurons. Our findings highlight the therapeutic potential of BRD4 inhibitors for the treatment of neuropathic pain.SIGNIFICANCE STATEMENT SEs drive gene expression by recruiting master transcription factors, cofactors, and RNA polymerase, but their role in the development of neuropathic pain remains unknown. Here, we report that the activity of an SS-SE, located upstream of the genes Ntmt1 and Prrx2, was elevated in the dorsal horn of mice with neuropathic pain. SS-SE contributes to the genesis of neuropathic pain by driving expression of Ntmt1 and Prrx2 Both inhibition of SS-SE with a pharmacological BRD4 inhibitor and genetic deletion of SS-SE attenuated pain hypersensitivities. This study suggests an effective and novel therapeutic strategy for neuropathic pain.


Asunto(s)
Hipersensibilidad , Neuralgia , Ratas , Masculino , Ratones , Animales , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Hiperalgesia/metabolismo , Ratas Sprague-Dawley , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Neuralgia/metabolismo , Asta Dorsal de la Médula Espinal/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Hipersensibilidad/metabolismo
10.
J Neurosci ; 43(15): 2665-2681, 2023 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-36898835

RESUMEN

The Slack channel (KCNT1, Slo2.2) is a sodium-activated and chloride-activated potassium channel that regulates heart rate and maintains the normal excitability of the nervous system. Despite intense interest in the sodium gating mechanism, a comprehensive investigation to identify the sodium-sensitive and chloride-sensitive sites has been missing. In the present study, we identified two potential sodium-binding sites in the C-terminal domain of the rat Slack channel by conducting electrophysical recordings and systematic mutagenesis of cytosolic acidic residues in the rat Slack channel C terminus. In particular, by taking advantage of the M335A mutant, which results in the opening of the Slack channel in the absence of cytosolic sodium, we found that among the 92 screened negatively charged amino acids, E373 mutants could completely remove sodium sensitivity of the Slack channel. In contrast, several other mutants showed dramatic decreases in sodium sensitivity but did not abolish it altogether. Furthermore, molecular dynamics (MD) simulations performed at the hundreds of nanoseconds timescale revealed one or two sodium ions at the E373 position or an acidic pocket composed of several negatively charged residues. Moreover, the MD simulations predicted possible chloride interaction sites. By screening predicted positively charged residues, we identified R379 as a chloride interaction site. Thus, we conclude that the E373 site and the D863/E865 pocket are two potential sodium-sensitive sites, while R379 is a chloride interaction site in the Slack channel.SIGNIFICANCE STATEMENT The research presented here identified two distinct sodium and one chloride interaction sites located in the intracellular C-terminal domain of the Slack (Slo2.2, KCNT1) channel. Identification of the sites responsible for the sodium and chloride activation of the Slack channel sets its gating property apart from other potassium channels in the BK channel family. This finding sets the stage for future functional and pharmacological studies of this channel.


Asunto(s)
Canales de potasio activados por Sodio , Animales , Ratas , Cloruros/metabolismo , Canales de potasio activados por Sodio/metabolismo , Sodio/metabolismo
11.
Neurobiol Dis ; 190: 106374, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38097092

RESUMEN

Despite women representing most of those affected by major depression, preclinical studies have focused almost exclusively on male subjects, partially due to a lack of ideal animal paradigms. As the persistent need regarding the sex balance of neuroscience research and female-specific pathology of mental disorders surges, the establishment of natural etiology-based and systematically validated animal paradigms for depression with female subjects becomes an urgent scientific problem. This study aims to establish, characterize, and validate a "Multiple Integrated Social Stress (MISS)" model of depression in female C57BL/6J mice by manipulating and integrating daily social stressors that females are experiencing. Female C57BL/6J mice randomly experienced social competition failure in tube test, modified vicarious social defeat stress, unescapable overcrowding stress followed by social isolation on each day, for ten consecutive days. Compared with their controls, female MISS mice exhibited a relatively decreased preference for social interaction and sucrose, along with increased immobility in the tail suspension test, which could last for at least one month. These MISS mice also exhibited increased levels of blood serum corticosterone, interleukin-6 L and 1ß. In the pharmacological experiment, MISS-induced dysfunctions in social interaction, sucrose preference, and tail suspension tests were amended by systematically administrating a single dose of sub-anesthetic ketamine, a rapid-onset antidepressant. Compared with controls, MISS females exhibited decreased c-Fos activation in their anterior cingulate cortex, prefrontal cortex, nucleus accumbens and some other depression-related brain regions. Furthermore, 24 h after the last exposure to the paradigm, MISS mice demonstrated a decreased center zone time in the open field test and decreased open arm time in the elevated plus-maze test, indicating anxiety-like behavioral phenotypes. Interestingly, MISS mice developed an excessive nesting ability, suggesting a likely behavioral phenotype of obsessive-compulsive disorder. These data showed that the MISS paradigm was sufficient to generate pathological profiles in female mice to mimic core symptoms, serum biochemistry and neural adaptations of depression in clinical patients. The present study offers a multiple integrated natural etiology-based animal model tool for studying female stress susceptibility.


Asunto(s)
Trastorno Depresivo , Humanos , Masculino , Femenino , Animales , Ratones , Ratones Endogámicos C57BL , Antidepresivos , Encéfalo , Sacarosa/uso terapéutico , Estrés Psicológico/complicaciones , Depresión/etiología , Modelos Animales de Enfermedad
12.
Mol Psychiatry ; 28(3): 1090-1100, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36642737

RESUMEN

Pain and anxiety comorbidities are a common health problem, but the neural mechanisms underlying comorbidity remain unclear. We propose that comorbidity implies that similar brain regions and neural circuits, with the lateral septum (LS) as a major candidate, process pain and anxiety. From results of behavioral and neurophysiological experiments combined with selective LS manipulation in mice, we find that LS GABAergic neurons were critical for both pain and anxiety. Selective activation of LS GABAergic neurons induced hyperalgesia and anxiety-like behaviors. In contrast, selective inhibition of LS GABAergic neurons reduced nocifensive withdrawal responses and anxiety-like behaviors. This was found in two mouse models, one for chronic inflammatory pain (induced by complete Freund's adjuvant) and one for anxiety (induced by chronic restraint stress). Additionally, using TetTag chemogenetics to functionally mark LS neurons, we found that activation of LS neurons by acute pain stimulation could induce anxiety-like behaviors and vice versa. Furthermore, we show that LS GABAergic projection to the lateral hypothalamus (LH) plays an important role in the regulation of pain and anxiety comorbidities. Our study revealed that LS GABAergic neurons, and especially the LSGABAergic-LH circuit, are a critical to the modulation of pain and anxiety comorbidities.


Asunto(s)
Dolor Crónico , Área Hipotalámica Lateral , Ratones , Animales , Área Hipotalámica Lateral/fisiología , Ansiedad , Comorbilidad , Neuronas GABAérgicas/fisiología
13.
PLoS Biol ; 19(3): e3000709, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33690628

RESUMEN

Daily rhythms are disrupted in patients with mood disorders. The lateral habenula (LHb) and dorsal raphe nucleus (DRN) contribute to circadian timekeeping and regulate mood. Thus, pathophysiology in these nuclei may be responsible for aberrations in daily rhythms during mood disorders. Using the 15-day chronic social defeat stress (CSDS) paradigm and in vitro slice electrophysiology, we measured the effects of stress on diurnal rhythms in firing of LHb cells projecting to the DRN (cellsLHb→DRN) and unlabeled DRN cells. We also performed optogenetic experiments to investigate if increased firing in cellsLHb→DRN during exposure to a weak 7-day social defeat stress (SDS) paradigm induces stress-susceptibility. Last, we investigated whether exposure to CSDS affected the ability of mice to photoentrain to a new light-dark (LD) cycle. The cellsLHb→DRN and unlabeled DRN cells of stress-susceptible mice express greater blunted diurnal firing compared to stress-näive (control) and stress-resilient mice. Daytime optogenetic activation of cellsLHb→DRN during SDS induces stress-susceptibility which shows the direct correlation between increased activity in this circuit and putative mood disorders. Finally, we found that stress-susceptible mice are slower, while stress-resilient mice are faster, at photoentraining to a new LD cycle. Our findings suggest that exposure to strong stressors induces blunted daily rhythms in firing in cellsLHb→DRN, DRN cells and decreases the initial rate of photoentrainment in susceptible-mice. In contrast, resilient-mice may undergo homeostatic adaptations that maintain daily rhythms in firing in cellsLHb→DRN and also show rapid photoentrainment to a new LD cycle.


Asunto(s)
Ritmo Circadiano/fisiología , Habénula/fisiología , Estrés Psicológico/metabolismo , Animales , Núcleo Dorsal del Rafe/efectos de los fármacos , Núcleo Dorsal del Rafe/metabolismo , Habénula/citología , Habénula/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Vías Nerviosas/fisiología , Neuronas/fisiología , Optogenética/métodos , Serotonina/farmacología , Derrota Social , Estrés Psicológico/fisiopatología
14.
J Neurosci ; 42(14): 3049-3064, 2022 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-35197318

RESUMEN

Anxiety disorders are a series of mental disorders characterized by anxiety and fear, but the molecular basis of these disorders remains unclear. In the present study, we find that the global Slack KO male mice exhibit anxious behaviors, whereas the Slack Y777H male mice manifest anxiolytic behaviors. The expression of Slack channels is rich in basolateral amygdala (BLA) glutamatergic neurons and downregulated in chronic corticosterone-treated mice. In addition, electrophysiological data show enhanced excitability of BLA glutamatergic neurons in the Slack KO mice and decreased excitability of these neurons in the Slack Y777H mice. Furthermore, the Slack channel deletion in BLA glutamatergic neurons is sufficient to result in enhanced avoidance behaviors, whereas Kcnt1 gene expression in the BLA or BLA-ventral hippocampus (vHPC) glutamatergic projections reverses anxious behaviors of the Slack KO mice. Our study identifies the role of the Slack channel in controlling anxious behaviors by decreasing the excitability of BLA-vHPC glutamatergic projections, providing a potential target for anxiolytic therapies.SIGNIFICANCE STATEMENT Anxiety disorders are a series of mental disorders characterized by anxiety and fear, but the molecular basis of these disorders remains unclear. Here, we examined the behaviors of loss- and gain-of-function of Slack channel mice in elevated plus maze and open field tests and found the anxiolytic role of the Slack channel. By altering the Slack channel expression in the specific neuronal circuit, we demonstrated that the Slack channel played its anxiolytic role by decreasing the excitability of BLA-vHPC glutamatergic projections. Our data reveal the role of the Slack channel in the regulation of anxiety, which may provide a potential molecular target for anxiolytic therapies.


Asunto(s)
Ansiedad , Complejo Nuclear Basolateral , Proteínas del Tejido Nervioso , Canales de potasio activados por Sodio , Animales , Ansiedad/metabolismo , Complejo Nuclear Basolateral/metabolismo , Hipocampo/metabolismo , Masculino , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/metabolismo , Canales de potasio activados por Sodio/metabolismo
15.
Ann Surg ; 277(6): e1387-e1396, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35848747

RESUMEN

OBJECTIVE: To determine the association between olfactory function and cognition in patients and rodents. BACKGROUND: Perioperative neurocognitive disorders include delayed neurocognitive recovery (dNCR). The contribution of olfactory function to dNCR remains undetermined. It is unknown whether odor enrichment could mitigate dNCR. METHODS: We performed a prospective observational cohort study to determine potential association between olfactory impairment and dNCR in patients. We assessed the effects of anesthesia/surgery on olfactory and cognitive function in mice using the block test and Barnes maze. We measured interleukin-6 (IL-6), olfactory mature protein, growth-associated protein 43, mature and premature olfactory neurons, postsynaptic density 95, and synaptophysin in blood, nasal epithelium, and hippocampus of mice. Odor enrichment, IL-6 antibody, and knockout of IL-6 were used in the interaction experiments. RESULTS: Patients with dNCR had worse odor identification than the patients without dNCR [preoperative: 7 (1.25, 9) vs 10 (8, 11), median (interquartile range), P <0.001; postoperative: 8 (2.25, 10) vs 10 (8, 11), P <0.001]. Olfactory impairment associated with dNCR in patients before and after adjusting age, sex, education, preoperative mini-mental state examination score, and days of the neuropsychological tests. Anesthesia/surgery induced olfactory and cognitive impairment, increased levels of IL-6 in blood and nasal epithelium, decreased amounts of olfactory receptor neurons and their markers in the nasal epithelium, and reduced amounts of synapse markers in the hippocampus of mice. These changes were attenuated by odor enrichment and IL-6 antibody. CONCLUSION: The anesthesia/surgery-induced olfactory impairment may contribute to dNCR in patients and postoperative cognitive impairment in mice. Odor enrichment could be a potential intervention.


Asunto(s)
Anestesia , Disfunción Cognitiva , Trastornos del Olfato , Humanos , Animales , Ratones , Odorantes , Interleucina-6 , Estudios Prospectivos , Trastornos del Olfato/etiología
16.
Anesthesiology ; 139(3): 262-273, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37440205

RESUMEN

BACKGROUND: Individualized positive end-expiratory pressure (PEEP) guided by dynamic compliance improves oxygenation and reduces postoperative atelectasis in nonobese patients. The authors hypothesized that dynamic compliance-guided PEEP could also reduce postoperative atelectasis in patients undergoing bariatric surgery. METHODS: Patients scheduled to undergo laparoscopic bariatric surgery were eligible. Dynamic compliance-guided PEEP titration was conducted in all patients using a downward approach. A recruitment maneuver (PEEP from 10 to 25 cm H2O at 5-cm H2O step every 30 s, with 15-cm H2O driving pressure) was conducted both before and after the titration. Patients were then randomized (1:1) to undergo surgery under dynamic compliance-guided PEEP (PEEP with highest dynamic compliance plus 2 cm H2O) or PEEP of 8 cm H2O. The primary outcome was postoperative atelectasis, as assessed with computed tomography at 60 to 90 min after extubation, and expressed as percentage to total lung tissue volume. Secondary outcomes included Pao2/inspiratory oxygen fraction (Fio2) and postoperative pulmonary complications. RESULTS: Forty patients (mean ± SD; 28 ± 7 yr of age; 25 females; average body mass index, 41.0 ± 4.7 kg/m2) were enrolled. Median PEEP with highest dynamic compliance during titration was 15 cm H2O (interquartile range, 13 to 17; range, 8 to 19) in the entire sample of 40 patients. The primary outcome of postoperative atelectasis (available in 19 patients in each group) was 13.1 ± 5.3% and 9.5 ± 4.3% in the PEEP of 8 cm H2O and dynamic compliance-guided PEEP groups, respectively (intergroup difference, 3.7%; 95% CI, 0.5 to 6.8%; P = 0.025). Pao2/Fio2 at 1 h after pneumoperitoneum was higher in the dynamic compliance-guided PEEP group (397 vs. 337 mmHg; group difference, 60; 95% CI, 9 to 111; P = 0.017) but did not differ between the two groups 30 min after extubation (359 vs. 375 mmHg; group difference, -17; 95% CI, -53 to 21; P = 0.183). The incidence of postoperative pulmonary complications was 4 of 20 in both groups. CONCLUSIONS: Postoperative atelectasis was lower in patients undergoing laparoscopic bariatric surgery under dynamic compliance-guided PEEP versus PEEP of 8 cm H2O. Postoperative Pao2/Fio2 did not differ between the two groups.


Asunto(s)
Atelectasia Pulmonar , Síndrome de Dificultad Respiratoria , Femenino , Humanos , Respiración con Presión Positiva/métodos , Atelectasia Pulmonar/etiología , Atelectasia Pulmonar/prevención & control , Obesidad/complicaciones , Pulmón , Síndrome de Dificultad Respiratoria/complicaciones
17.
Pharmacol Res ; 191: 106776, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37084858

RESUMEN

The paucity of medications with novel mechanisms for pain treatment combined with the severe adverse effects of opioid analgesics has led to an imperative pursuit of non-opioid analgesia and a better understanding of pain mechanisms. Here, we identify the putative glutamatergic inputs from the paraventricular thalamic nucleus to the nucleus accumbens (PVTGlut→NAc) as a novel neural circuit for pain sensation and non-opioid analgesia. Our in vivo fiber photometry and in vitro electrophysiology experiments found that PVTGlut→NAc neuronal activity increased in response to acute thermal/mechanical stimuli and persistent inflammatory pain. Direct optogenetic activation of these neurons in the PVT or their terminals in the NAc induced pain-like behaviors. Conversely, inhibition of PVTGlut→NAc neurons or their NAc terminals exhibited a potent analgesic effect in both naïve and pathological pain mice, which could not be prevented by pretreatment of naloxone, an opioid receptor antagonist. Anterograde trans-synaptic optogenetic experiments consistently demonstrated that the PVTGlut→NAc circuit bi-directionally modulates pain behaviors. Furthermore, circuit-specific molecular profiling and pharmacological studies revealed dopamine receptor 3 as a candidate target for pain modulation and non-opioid analgesic development. Taken together, these findings provide a previously unknown neural circuit for pain sensation and non-opioid analgesia and a valuable molecular target for developing future safer medication.


Asunto(s)
Analgesia , Analgésicos no Narcóticos , Ratones , Animales , Núcleos Talámicos de la Línea Media , Núcleo Accumbens/fisiología , Dolor/tratamiento farmacológico
18.
Br J Anaesth ; 130(4): 446-458, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36737387

RESUMEN

BACKGROUND: Corticotropin-releasing factor (CRF) neurones in the paraventricular nucleus (PVN) of the hypothalamus (PVNCRF neurones) can promote wakefulness and are activated under anaesthesia. However, whether these neurones contribute to anaesthetic effects is unknown. METHODS: With a combination of chemogenetic and molecular approaches, we examined the roles of PVNCRF neurones in isoflurane anaesthesia in mice and further explored the underlying cellular and molecular mechanisms. RESULTS: PVN neurones exhibited increased Fos expression during isoflurane anaesthesia (mean [standard deviation], 218 [69.3] vs 21.3 [7.3]; P<0.001), and ∼75% were PVNCRF neurones. Chemogenetic inhibition of PVNCRF neurones facilitated emergence from isoflurane anaesthesia (11.7 [1.1] vs 13.9 [1.2] min; P=0.001), whereas chemogenetic activation of these neurones delayed emergence from isoflurane anaesthesia (16.9 [1.2] vs 13.9 [1.3] min; P=0.002). Isoflurane exposure increased CRF protein expression in PVN (4.0 [0.1] vs 2.2 [0.3], respectively; P<0.001). Knockdown of CRF in PVNCRF neurones mimicked the effects of chemogenetic inhibition of PVNCRF neurones in facilitating emergence (9.6 [1.1] vs 13.0 [1.4] min; P=0.003) and also abolished the effects of chemogenetic activation of PVNCRF neurones on delaying emergence from isoflurane anaesthesia (10.3 [1.3] vs 16.0 [2.6] min; P<0.001). Acute, but not chronic, stress delayed emergence from isoflurane anaesthesia (15.5 [1.5] vs 13.0 [1.4] min; P=0.004). This effect was reversed by chemogenetic inhibition of PVNCRF neurones (11.7 [1.6] vs 14.7 [1.4] min; P=0.001) or knockdown of CRF in PVNCRF neurones (12.3 [1.5] vs 15.3 [1.6] min; P=0.002). CONCLUSIONS: CRF neurones in the PVN of the hypothalamus neurones modulate isoflurane anaesthesia and acute stress effects on anaesthesia through CRF signalling.


Asunto(s)
Anestesia , Isoflurano , Ratones , Animales , Hormona Liberadora de Corticotropina/metabolismo , Hormona Liberadora de Corticotropina/farmacología , Núcleo Hipotalámico Paraventricular/metabolismo , Isoflurano/farmacología , Hipotálamo/metabolismo
19.
Acta Pharmacol Sin ; 44(9): 1748-1767, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37095197

RESUMEN

Circular RNAs (ciRNAs) are emerging as new players in the regulation of gene expression. However, how ciRNAs are involved in neuropathic pain is poorly understood. Here, we identify the nervous-tissue-specific ciRNA-Fmn1 and report that changes in ciRNA-Fmn1 expression in spinal cord dorsal horn neurons play a key role in neuropathic pain after nerve injury. ciRNA-Fmn1 was significantly downregulated in ipsilateral dorsal horn neurons after peripheral nerve injury, at least in part because of a decrease in DNA helicase 9 (DHX9), which regulates production of ciRNA-Fmn1 by binding to DNA-tandem repeats. Blocking ciRNA-Fmn1 downregulation reversed nerve-injury-induced reductions in both the binding of ciRNA-Fmn1 to the ubiquitin ligase UBR5 and the level of ubiquitination of albumin (ALB), thereby abrogating the nerve-injury-induced increase of ALB expression in the dorsal horn and attenuating the associated pain hypersensitivities. Conversely, mimicking downregulation of ciRNA-Fmn1 in naïve mice reduced the UBR5-controlled ubiquitination of ALB, leading to increased expression of ALB in the dorsal horn and induction of neuropathic-pain-like behaviors in naïve mice. Thus, ciRNA-Fmn1 downregulation caused by changes in binding of DHX9 to DNA-tandem repeats contributes to the genesis of neuropathic pain by negatively modulating UBR5-controlled ALB expression in the dorsal horn.


Asunto(s)
Neuralgia , ARN Circular , Ratones , Animales , ARN Circular/metabolismo , Regulación hacia Abajo , ADN Helicasas , Hiperalgesia/metabolismo , Asta Dorsal de la Médula Espinal/metabolismo , Neuralgia/etiología
20.
BMC Anesthesiol ; 23(1): 284, 2023 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-37608257

RESUMEN

BACKGROUND: Cognitive decline following surgery is a common concern among elderly individuals. Leukocyte telomere length (LTL) can be assessed as a biological clock connected to an individual lifespan. However, the mechanisms causing this inference are still not fully understood. As a result of this, LTL has the potential to be useful as an aging-related biomarker for assessing delayed neurocognitive recovery (dNCR) and related diseases. METHODS: For this study, 196 individuals over 60 who were scheduled due to major non-cardiac surgical operations attended neuropsychological testing before surgery, followed by additional testing one week later. The finding of dNCR was based on a measured Z-score ≤ -1.96 on two or more separate tests. The frequency of dNCR was presented as the primary outcome of the study. Secondly, we evaluated the association between dNCR and preoperative LTL. RESULTS: Overall, 20.4% [40/196; 95% confidence interval (CI), 14.7-26.1%] of patients exhibited dNCR 1-week post-surgery. Longer LTL was identified as a predictor for the onset of early cognitive impairment resulting in postoperative cognitive decline [odds ratio (OR), 14.82; 95% CI, 4.01-54.84; P < 0.001], following adjustment of age (OR, 12.33; 95% CI, 3.29-46.24; P < 0.001). The dNCR incidence based on LTL values of these patients, the area under the receiver operating characteristic (ROC) curve was 0.79 (95% CI, 0.722-0.859; P < 0.001). At an optimal cut-off value of 0.959, LTL values offered respective specificity and sensitivity values of 64.7% and 87.5%. CONCLUSIONS: In summary, the current study revealed that the incidence of dNCR was strongly associated with prolonged LTL. Furthermore, this biomarker could help identify high-risk patients and offer insight into the pathophysiology of dNCR.


Asunto(s)
Envejecimiento , Disfunción Cognitiva , Anciano , Humanos , Estudios Retrospectivos , Leucocitos , Telómero
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA