Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Am Chem Soc ; 145(32): 17892-17901, 2023 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-37482661

RESUMEN

Exploring an efficient and robust electrocatalyst for hydrogen evolution reaction (HER) at high pH and temperature holds the key to the industrial application of alkaline water electrolysis (AWE). Herein, we design an open tunnel structure by dealloying a series of Laves phase intermetallics, i.e., MCo2 and MRu0.25Co1.75 (M = Sc and Zr). The dealloying process can induce a zeolite-like metal framework for ScCo2 and ScRu0.25Co1.75 by stripping Sc metal from the center of a tunnel structure. This structural engineering significantly lowers their overpotentials at a current density of 500 mA/cm2 (η500) ca. 80 mV in 1.0 M KOH. Through a simple process, ScRu0.25Co1.75 can be easily decorated on a carbon cloth substrate and only requires 132 mV to reach 500 mA/cm2. More importantly it can maintain activity over 1000 h in industrial conditions (6.0 M KOH at 333 K), showing its potential for practical industrial applications.

2.
Plant Biotechnol J ; 20(4): 660-675, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34743386

RESUMEN

Bermudagrass (Cynodon dactylon) is one of the most widely cultivated warm-season turfgrass species around the world. Cold stress has been a key environmental factor that adversely affects the growth, development, and geographical distribution of bermudagrass; however, the underlying mechanism of bermudagrass responsive to cold stress remains largely unexplored. Here, we identified a cold-induced WRKY transcription factor CdWRKY2 from bermudagrass and demonstrated its function in cold stress response. Overexpression of CdWRKY2 enhanced cold tolerance in transgenic Arabidopsis and bermudagrass hairy roots, while knocking down CdWRKY2 expression via virus-induced gene silencing increased cold susceptibility. RNA sequencing showed that overexpression of CdWRKY2 in Arabidopsis activated the expression of genes involved in sucrose synthesis and metabolism, including sucrose synthase 1 (AtSUS1) and sucrose phosphate synthase 2F (AtSPS2F). CdSPS1, the homology gene of AtSPS2F in bermudagrass, was subsequently proven to be the direct target of CdWRKY2 by yeast one-hybrid, electrophoretic mobility shift assay, and transient expression analysis. As expected, overexpression of CdSPS1 conferred cold tolerance in transgenic Arabidopsis plants, whereas silencing CdSPS1 expression enhanced cold sensitivity in bermudagrass. Besides, CdCBF1 whose expression was dramatically up-regulated in CdWRKY2-overexpressing bermudagrass hairy roots but down-regulated in CdWRKY2-silencing bermudagrass both under normal and cold stress conditions was confirmed as another target of CdWRKY2. Collectively, this study reveals that CdWRKY2 is a positive regulator in cold stress by targeting CdSPS1 and CdCBF1 promoters and activating their expression to coordinately mediate sucrose biosynthesis and CBF-signalling pathway, which provides valuable information for breeding cold-resistant bermudagrass through gene manipulation.


Asunto(s)
Arabidopsis , Cynodon , Arabidopsis/genética , Frío , Cynodon/genética , Cynodon/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Fitomejoramiento , Plantas Modificadas Genéticamente , Transducción de Señal/genética , Sacarosa/metabolismo
3.
J Clin Lab Anal ; 36(2): e24225, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34997649

RESUMEN

BACKGROUND: Elevated serum ferritin levels (SFLs) was previously reported to be related with hepatic histologic severity and advanced liver fibrosis among non-alcoholic fatty liver disease (NAFLD) patients. However, whether NAFLD influences SFLs remains uncertain and needs more clinical evidences. This study explored the differences of SFLs in US adults with or without NAFLD. METHODS: We conducted a cross-sectional study of 3689 participants aged 18-80 years using the National Health and Nutrition Examination Survey (NHANES) 2017-2018 cycle. NAFLD status was confirmed based on controlled attenuation parameter (CAP) values ≥274 dB/m through vibration controlled and transient elastography (VCTE). We performed weighted multivariable logistic regression models to evaluate the associations between NAFLD and SFLs in different age and gender. RESULTS: There was a positive association between NAFLD and SFLs in all three models (model 1:ß = 23.07, 95% CI: 10.32, 35.81; model 2:ß = 23.68, 95% CI: 10.86, 36.50; model 3:ß = 13.86, 95% CI: 0.29, 27.43). After adjusting for the covariates, this positive association persisted in females (ß = 16.22, 95% CI: 2.81, 29.62). Further, relationships between NAFLD and SFLs were significantly different in various age groups. In the subgroup stratified by gender, their associations further differed. In males, the positive association was more prominent in 50-64 age group (ß = 70.89, 95% CI: 25.14, 116.64). In females, this positive association was more prominent in 18-34 age group (ß = 20.72, 95% CI: 7.45, 33.99). However, no correlations between severe steatosis, significant fibrosis, advanced fibrosis, cirrhosis, and SFLs in adults with NAFLD were found. CONCLUSION: This study indicated that US adults suffered with NAFLD had significantly higher SFLs compared with their counterparts in non-NAFLD group. Moreover, the associations between NAFLD and SFLs further differed by age and gender.


Asunto(s)
Ferritinas/sangre , Enfermedad del Hígado Graso no Alcohólico/sangre , Adolescente , Adulto , Factores de Edad , Anciano , Anciano de 80 o más Años , Estudios Transversales , Femenino , Humanos , Cirrosis Hepática/sangre , Cirrosis Hepática/complicaciones , Masculino , Persona de Mediana Edad , Enfermedad del Hígado Graso no Alcohólico/complicaciones , Encuestas Nutricionales , Factores Sexuales , Estados Unidos
4.
An Acad Bras Cienc ; 93(1): e20190346, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33787750

RESUMEN

Based on the leakage of the coalbed methane (CBM) drilling engineering practice of Luan mining area in China, the author determines the safe drilling fluid density range for the stable borehole wall based on borehole wall collapse and fracture pressure. Such parameters as the drilling fluid hydraulic parameters (including pump pressure, pump power and displacement, nozzle diameter, bit pressure drop, bit hydraulic horsepower, circulation pressure drop, impact force and jet velocity) and drilling parameters (including weight-on-bit, drilling rotary speed, bit tooth wear) in each borehole section are optimized. Taking the lowest drilling cost as the controlling target, the drilling parameter optimization model is designed and solved by the genetic algorithm. Furthermore, a software named "CBM borehole wall stability parameter design and optimization" characterized by visualization and applicable for drilling formation condition, which can be used to design and optimize the borehole drilling technological parameters, is developed. This program includes such modules as drilling fluid density prediction, drilling technology design, database management, user management and help. The developed software is proven to solve the drilling leakage effectively in the No.67 borehole practice, which can help drilling engineers to optimize CBM drilling technological parameters safely and quickly.


Asunto(s)
Metano , Minería , China , Fenómenos Mecánicos , Programas Informáticos
5.
J Integr Plant Biol ; 63(8): 1410-1415, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33913600

RESUMEN

Clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) system has been widely used for precise gene editing in plants. However, simultaneous gene editing of multiple homoeoalleles remains challenging, especially in self-incompatible polyploid plants. Here, we simultaneously introduced targeted mutations in all three homoeoalleles of two genes in the self-incompatible allohexaploid tall fescue, using both CRISPR/Cas9 and LbCas12a (LbCpf1) systems. Loss-of-function mutants of FaPDS exhibited albino leaves, while knockout of FaHSP17.9 resulted in impaired heat resistance in T0 generation of tall fescue. Moreover, these mutations were inheritable. Our findings demonstrate the feasibility of generating loss-of-function mutants in T0 generation polyploid perennial grasses using CRISPR/Cas systems.


Asunto(s)
Alelos , Edición Génica , Poaceae/genética , Poliploidía , Autoincompatibilidad en las Plantas con Flores/genética , Secuencia de Bases , Sistemas CRISPR-Cas/genética , Respuesta al Choque Térmico , Mutagénesis/genética , Mutación/genética
6.
BMC Plant Biol ; 20(1): 366, 2020 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-32746857

RESUMEN

BACKGROUND: As a cool-season grass species, tall fescue (Festuca arundinacea) is challenged by increasing temperatures. Heat acclimation or activation of leaf senescence, are two main strategies when tall fescue is exposed to heat stress (HS). However, lacking a genome sequence, the complexity of hexaploidy nature, and the short read of second-generation sequencing hinder a comprehensive understanding of the mechanism. This study aims to characterize the molecular mechanism of heat adaptation and heat-induced senescence at transcriptional and post-transcriptional levels. RESULTS: Transcriptome of heat-treated (1 h and 72 h) and senescent leaves of tall fescue were generated by combining single-molecular real-time and Illumina sequencing. In total, 4076; 6917, and 11,918 differentially expressed genes (DEGs) were induced by short- and long-term heat stress (HS), and senescence, respectively. Venn and bioinformatics analyses of DEGs showed that short-term HS strongly activated heat shock proteins (Hsps) and heat shock factors (Hsfs), as well as specifically activated FK506-binding proteins (FKBPs), calcium signaling genes, glutathione S-transferase genes, photosynthesis-related genes, and phytohormone signaling genes. By contrast, long-term HS shared most of DEGs with senescence, including the up-regulated chlorophyll catabolic genes, phytohormone synthesis/degradation genes, stress-related genes, and NACs, and the down-regulated photosynthesis-related genes, FKBPs, and catalases. Subsequently, transient overexpression in tobacco showed that FaHsfA2a (up-regulated specifically by short-term HS) reduced cell membrane damages caused by HS, but FaNAC029 and FaNAM-B1 (up-regulated by long-term HS and senescence) increased the damages. Besides, alternative splicing was widely observed in HS and senescence responsive genes, including Hsps, Hsfs, and phytohormone signaling/synthesis genes. CONCLUSIONS: The short-term HS can stimulate gene responses and improve thermotolerance, but long-term HS is a damage and may accelerate leaf senescence. These results contribute to our understanding of the molecular mechanism underlying heat adaptation and heat-induced senescence.


Asunto(s)
Festuca/genética , Respuesta al Choque Térmico/genética , Hojas de la Planta/fisiología , Empalme Alternativo , Festuca/fisiología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , ARN de Planta , Análisis de Secuencia de ARN , Termotolerancia/genética , Factores de Tiempo , Nicotiana/genética
7.
Ecotoxicol Environ Saf ; 202: 110877, 2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-32574862

RESUMEN

Heat stress has been a major environmental factor limiting the growth and development of Pinellia ternata which is an important Chinese traditional medicine. It has been reported that spermidine (SPD) and melatonin (MLT) play pivotal roles in modulating heat stress response (HSR). However, the roles of SPD and MLT in HSR of P. ternata, and the potential mechanism is still unknown. Here, exogenous SPD and MLT treatments alleviated heat-induced damages in P. ternata, which was supported by the increased chlorophyll content, OJIP curve, and relative water content, and the decreased malondialdehyde and electrolyte leakage. Then, RNA sequencing between CK (control) and Heat (1 h of heat treatment) was conducted to analyze how genes were in response to short-term heat stress in P. ternata. A total of 14,243 (7870 up- and 6373 down-regulated) unigenes were differentially expressed after 1 h of heat treatment. Bioinformatics analysis revealed heat-responsive genes mainly included heat shock proteins (HSPs), ribosomal proteins, ROS-scavenging enzymes, genes involved in calcium signaling, hormone signaling transduction, photosynthesis, pathogen resistance, and transcription factors such as heat stress transcription factors (HSFs), NACs, WRKYs, and bZIPs. Among them, PtABI5, PtNAC042, PtZIP17, PtSOD1, PtHSF30, PtHSFB2b, PtERF095, PtWRKY75, PtGST1, PtHSP23.2, PtHSP70, and PtLHC1 were significantly regulated by SPD or MLT treatment with same or different trends under heat stress condition, indicating that exogenous application of MLT and SPD might enhance heat tolerance in P. ternata through regulating these genes but may with different regulatory patterns. These findings contributed to the identification of potential genes involved in short-term HSR and the improved thermotolerance by MLT and SPD in P. ternata, which provided important clues for improving thermotolerance of P. ternata.


Asunto(s)
Melatonina/metabolismo , Pinellia/fisiología , Espermidina/metabolismo , Termotolerancia/genética , Clorofila/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Perfilación de la Expresión Génica , Proteínas de Choque Térmico/metabolismo , Respuesta al Choque Térmico/efectos de los fármacos , Respuesta al Choque Térmico/fisiología , Calor , Fotosíntesis/efectos de los fármacos , Pinellia/genética , Pinellia/metabolismo , Análisis de Secuencia de ARN , Termotolerancia/efectos de los fármacos , Transcriptoma/efectos de los fármacos
8.
Ecotoxicol Environ Saf ; 191: 110206, 2020 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-31954923

RESUMEN

Heat stress is found to be a detrimental factor for growth and development of alfalfa (Medicago sativa L.) which is tremendously invaluable forage due to its high feed value and yield potential. Salicylic acid (SA) has been reported to play a pivotal role in the regulation of plants biotic and abiotic stress response. However, the role of exogenous SA in protecting alfalfa from heat-induced damage has rarely been studied. In this study, four-week-old alfalfa seedlings were treated with 0.25 mM or 0.5 mM SA five days prior to high stress treatment (three day), and various growth and physiological traits were measured. The results showed that exogenous SA pretreatment could improve leaf morphology, plant height, biomass, chlorophyll content, and photosynthetic efficiency of alfalfa under heat stress. Meanwhile, SA could alleviate heat-induced membrane damage by reducing electrolyte leakage (EL) and malondialdehyde (MDA) content, and regulate the activities of antioxidant enzymes including catalase (CAT), superoxide dismutase (SOD), and peroxidase (POD). The results revealed that exogenous SA application enhanced alfalfa heat tolerance by modulating various morphological and physiological characteristics under heat stress, with more prominent effect at lower concentration (0.25 mM). Overall, this study provides fundamental insights into the SA-mediated physiological adaptation of alfalfa plants to heat stress, which could have useful implication in managing other plants which are suffering global warming.


Asunto(s)
Respuesta al Choque Térmico/efectos de los fármacos , Medicago sativa/efectos de los fármacos , Ácido Salicílico/farmacología , Antioxidantes/metabolismo , Catalasa/metabolismo , Clorofila/metabolismo , Malondialdehído/metabolismo , Medicago sativa/crecimiento & desarrollo , Medicago sativa/metabolismo , Peroxidasa/metabolismo , Fotosíntesis/efectos de los fármacos , Superóxido Dismutasa/metabolismo
9.
Plant J ; 96(1): 22-38, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30086201

RESUMEN

Grafting-induced variations have been observed in many plant species, but the heritability of variation in progeny is not well understood. In our study, adventitious shoots from the C cell lineage of shoot apical meristem (SAM) grafting chimera TCC (where the origin of the outmost, middle and innermost cell layers, respectively, of SAM is designated by 'T' for tuber mustard and 'C' for red cabbage) were induced and identified as r-CCC (r = regenerated). To investigate the maintenance of grafting variations during cell propagation and regeneration, different generations of asexual progeny (r-CCCn, n = generation) were established through successive regeneration of axillary shoots from r-CCC. The fourth generation of r-CCC (r-CCC4) was selected to perform whole genome bisulfite sequencing for comparative analysis of hetero-grafting-induced global methylation changes relative to r-s-CCC4 (s = self-grafting). Increased CHH methylation levels and proportions were observed in r-CCC4, with substantial changes occurring in the repeat elements. Small RNA sequencing revealed 1135 specific small interfering RNA (siRNA) tags that were typically expressed in r-CCC, r-CCC2 and r-CCC4. Notably, 65% of these specific siRNAs were associated with repeat elements, termed RE siRNAs. Subsequent analysis revealed that the CHH methylation of RE siRNA-overlapping regions was mainly hypermethylation in r-CCC4, indicating that they were responsible for directing and maintaining grafting-induced CHH methylation. Moreover, the expression of 13 differentially methylated genes (DMGs) correlated with the phenotypic variation, showing differential expression levels between r-CCC4 and r-s-CCC4. These DMGs were predominantly CG hypermethylated, their methylation modifications corresponded to the transcription of relative methyltransferase.


Asunto(s)
Brassica/fisiología , Epigénesis Genética , Reproducción Asexuada , Brassica/metabolismo , Metilación de ADN , Variación Genética , Meristema/fisiología , Brotes de la Planta/fisiología
10.
Ecotoxicol Environ Saf ; 160: 349-356, 2018 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-29860131

RESUMEN

Cadmium (Cd) is a severely toxic heavy metal and environmental pollutant. Tall fescue is a cold season turf grass which has high resistance to Cd as well as the ability to enrich it. To investigate the molecular mechanism underlying the adaptability of tall fescue to Cd stress, RNA-Seq was used to examine Cd stress responses of tall fescue at a transcriptional level. A total of 12 cDNA libraries were constructed from the total RNA of roots or leaves of tall fescue with or without Cd treatments. A total of 2594 (1768 up- and 826 down-regulated) differentially expressed genes (DEGs) were detected in the roots of Cd-stressed tall fescue compared with control roots (R_cd vs R_ck), while only 52 (29 up- and 23 down-regulated) DEGs were found in the leaves of Cd-stressed plants versus the controls (L_cd vs L_ck). The genes encoding glutathione S-transferase (GST), transporter proteins including the ABC transporter, ZRT/IRT-like protein, potassium transporter/channel, nitrate transporter, putative iron-phytosiderophore transporter, copper-transporting ATPase or transporter and multidrug and toxic compound extrusion (MATE) proteins, and numerous transcription factors were found to be significantly induced in Cd-treated roots. In addition, pathogenesis/disease-related gene mRNAs were accumulated in Cd-treated roots of tall fescue. Furthermore, the significantly enriched KEGG pathways in roots were related to 'Glutathione metabolism', 'Ribosome', 'alpha-Linolenic acid metabolism', 'Diterpenoid biosynthesis', 'Sulfur metabolism', 'Phenylpropanoid biosynthesis', 'Protein processing in endoplasmic reticulum', 'Protein export' and 'Nitrogen metabolism'. The study provides novel insights for further understanding the molecular mechanisms of tall fescue responses to Cd stress.


Asunto(s)
Cadmio/toxicidad , Resistencia a Medicamentos/genética , Festuca/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Contaminantes del Suelo/toxicidad , Festuca/genética , Perfilación de la Expresión Génica , Biblioteca de Genes , Genes de Plantas , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/genética , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/genética , ARN Mensajero/metabolismo
11.
Funct Integr Genomics ; 15(6): 753-62, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26277720

RESUMEN

Tuber mustard (Brassica juncea (L.) Czern. et Coss. var. tumida Tsen et Lee) is an important vegetable crop with a characteristic of expanded stem that is edible. The underlying molecular mechanism of the stem expansion is not well understood. Here, we reported that a total of 51 differentially expressed fragments (DEFs) with three expression patterns during stem expansion of tuber mustard were identified by cDNA-AFLP analysis. Among the DEFs, DEF11 with high homology to Arabidopsis thaliana apyrase 2 (AtAPY2) that encodes an enzyme with ATPase and ADPase activity was development- and tissue-specific. DEF11 was thus renamed as BjAPY2. The expression levels of BjAPY2 increased with the stem expression and were the highest at stage IV, a developmental stage at which the stem expanded most rapidly. In contrast, the BjAPY2 expression levels in leaves were much lower and remained unchanged during leaf development and expansion, suggesting that BjAPY2 was closely associated with the expansion of stems but not of leaves in the tuber mustard. Interestingly, the expression of BjAPY2 was higher in the mustard under short-day (SD) photoperiod (8 h/16 h) than that under long-day (LD) photoperiod (16 h/8 h); similarly, the transcript levels of BjAPY2 were higher in the mustard grown at low temperature (14 °C/12 °C) than that at high temperature (26 °C /24 °C). The SD photoperiod and low temperature were two environmental conditions that favored the mustard stem expansion. Further cloning and analysis of the promoter region of BjAPY2 revealed that there were indeed several types of motifs in the promoter region, including the light and temperature responsive elements. These results suggested that BjAPY2 might play an important role during the stem expansion of the tuber mustard.


Asunto(s)
Apirasa/genética , Regulación de la Expresión Génica de las Plantas , Respuesta al Choque Térmico , Planta de la Mostaza/genética , Fotoperiodo , Proteínas de Plantas/genética , Secuencia de Aminoácidos , Apirasa/química , Apirasa/metabolismo , Datos de Secuencia Molecular , Planta de la Mostaza/crecimiento & desarrollo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Tallos de la Planta/genética , Tallos de la Planta/crecimiento & desarrollo , Elementos de Respuesta , Luz Solar
12.
BMC Plant Biol ; 14: 272, 2014 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-25326708

RESUMEN

BACKGROUND: An allopolyploid formation consists of the two processes of hybridisation and chromosome doubling. Hybridisation makes a different genome combined in the same cell, and genome "shock" and instability occur during this process, whereas chromosome doubling results in doubling and reconstructing the genome dosage. Recent studies have demonstrated that small RNAs, play an important role in maintaining the genome reconstruction and stability. However, to date, little is known regarding the role of small RNAs during the process of wide hybridisation and chromosome doubling, which is essential to elucidate the mechanism of polyploidisation. Therefore, the genetic and DNA methylation alterations and changes in the siRNA and miRNA were assessed during the formation of an allodiploid and its allotetraploid between Brassica rapa and Brassica nigra in the present study. RESULTS: The phenotypic analysis exhibited that the allotetraploid had high heterosis compared with their parents and the allodiploid. The methylation-sensitive amplification polymorphism (MSAP) analysis indicated that the proportion of changes in the methylation pattern of the allodiploid was significantly higher than that found in the allotetraploid, while the DNA methylation ratio was higher in the parents than the allodiploid and allotetraploid. The small RNAs results showed that the expression levels of miRNAs increased in the allodiploid and allotetraploid compared with the parents, and the expression levels of siRNAs increased and decreased compared with the parents B. rapa and B. nigra, respectively. Moreover, the percentages of miRNAs increased with an increase in the polyploidy levels, but the percentages of siRNAs and DNA methylation alterations decreased with an increase in the polyploidy levels. Furthermore, qRT-PCR analysis showed that the expression levels of the target genes were negatively corrected with the expressed miRNAs. CONCLUSIONS: The study showed that siRNAs and DNA methylation play an important role in maintaining the genome stability in the formation of an allotetraploid. The miRNAs regulate gene expression and induce the phenotype variation, which may play an important role in the occurrence of heterosis in the allotetraploid. The findings of this study may provide new information for elucidating that the allotetraploids have a growth advantage over the parents and the allodiploids.


Asunto(s)
Brassica rapa/genética , Metilación de ADN , Genoma de Planta/genética , MicroARNs/genética , Planta de la Mostaza/genética , ARN Interferente Pequeño/genética , Hibridación Genética , Poliploidía , ARN de Planta/genética
13.
ACS Omega ; 9(32): 34380-34396, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39157144

RESUMEN

The mechanical properties of coal measure rocks and their evaluation significantly impact the process and efficacy of coal measure exploration and development. This study focuses on the Guizhou Longtan Formation coal measure. The mechanical and fracturing characteristics of coal measure rock samples are analyzed via well coring, geophysical logging, and indoor experiments. Additionally, predictive models for rock mechanical parameters are developed, and an evaluation system for the Longtan Formation coal measure rock mass is established. The findings are as follows: (1) Coal measure rocks in Guizhou's Longtan Formation exhibit a relatively low elastic modulus and tensile strength, but a substantial variation in compressive strength. The triaxial compressive strength, elastic modulus, and residual strength increase nonlinearly with increasing confining pressure. As the confining pressure increases, the failure mode of the mudstone and siltstone transitions from primarily splitting failure to shearing failure. (2) Strong correlations are calculated between logging parameters and rock mechanical parameters and are used to construct three regression prediction models, yielding an average prediction accuracy of approximately 85% for rock mechanical properties. (3) Considering the rock mechanical properties, rock mass structure and stratigraphic characteristics, and the occurrence environment related to the characteristics of rock mass affecting coal measure gas development, eight evaluation indices are selected. The analytic hierarchy process-entropy weighting method is used to determine the weights of the comprehensive evaluation indices, and a coal measure rock mass evaluation system is established by utilizing gray clustering analysis. The evaluation results categorize the mudstone group (mudstone and silty mudstone) as Classes III-IV, the fine sandstone group as Classes I and II, and the siltstone group (muddy siltstone and siltstone) as Classes II and III. A comparative analysis with fuzzy comprehensive evaluation results and extenics theory evaluation results demonstrated a high level of consistency. These findings benefit coal measure rock mechanics classification and quantitative research on rock mechanics properties, providing a solid foundation for efficient coal measure gas exploration and development.

14.
Front Vet Sci ; 11: 1381871, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38596467

RESUMEN

This study conducted a comparison of the effects of non-protein nitrogen with different acid-base properties on feed intake, rumen fermentation, nutrient digestion and antioxidant capacity in fattening Hu sheep. Sixteen fattening male sheep (31.43 ± 2.41 kg) with permanent rumen cannulas were randomly assigned to two dietary treatments: 1% urea and 1.78% ammonium chloride (NH4Cl, AC). A 42 days experimental period was conducted, with 14 days for adaptation and 28 days for treatment. Daily feed intake was recorded and various samples including feed, feces, rumen fluid, and blood were collected at different time points during the final week. The results indicated that the urea group had significantly higher dry matter intake, average daily gain, and gain efficiency in comparison to the AC group (p < 0.01). There was no difference in rumen pH and concentration of ammonia nitrogen between different groups (p > 0.05), but the rumen pH of urea group was higher than that of the AC group at 1 and 3 h after feeding (p < 0.05). The urea group exhibited higher concentrations of total volatile fatty acids (VFA) and individual VFAs compared to the AC group at all-time points (p < 0.01). Compared to the urea group, the intake of all nutrients decreased in the AC group (p < 0.01), but the digestibility of dry matter and organic matter increased significantly (p < 0.01), and the digestibility of CP had an increasing trend (p = 0.06) in the AC group. Additionally, the urea group had lower levels of serum glucagon-like peptide-1, peptide YY, Cl, total protein and globulin than the AC group (p < 0.05). The overall levels of HCO3-, superoxide dismutase, glutathione peroxidase, catalase, albumin/globulin, blood urea nitrogen and total cholesterol in the urea group increased significantly compared to the AC group (p < 0.05). It was concluded that adding urea to the high-concentrate diet resulted in increased rumen pH and improved rumen fermentation and growth performance in fattening sheep compared to NH4Cl addition. Furthermore, urea addition improved sheep's antioxidant capacity and maintained their acid-base balance more effectively as compared to NH4Cl.

15.
Plant Physiol Biochem ; 206: 108260, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38096733

RESUMEN

The B3 family genes constitute a pivotal group of transcription factors that assume diverse roles in the growth, development, and response to both biotic and abiotic stresses in plants. Medicago truncatula is a diploid plant with a relatively small genome, adopted as a model species for legumes genetics and functional genomic research. In this study, 173 B3 genes were identified in the M. truncatula genome, and classified into seven subgroups by phylogenetic analysis. Collinearity analysis revealed that 18 MtB3 gene pairs arose from segmented replication events. Analysis of expression patterns disclosed that 61 MtB3s exhibited a spectrum of expression profiles across various tissues and in the response to salt stress, indicating their potential involvement in salt stress signaling response. Among these genes, MtB3-53 exhibited tissue-specific differential expression and demonstrated a rapid response to salt stress induction. Overexpression of MtB3-53 gene in Arabidopsis improves salt stress tolerance by increasing plant biomass and chlorophyll content, while reducing leaf cell membrane damage. Moreover, salt treatment resulted in more up-regulation of AtABF1, AtABI3, AtHKT1, AtKIN1, AtNHX1, and AtRD29A in MtB3-53 transgenic Arabidopsis plants compared to the wild type, providing evidences that MtB3-53 enhances plant salt tolerance not only by modulating ion homeostasis but also by stimulating the production of antioxidants, which leads to the alleviation of cellular damage caused by salt stress. In conclusion, this study provides a fundamental basis for future investigations into the B3 gene family and its capacity to regulate plant responses to environmental stressors.


Asunto(s)
Arabidopsis , Medicago truncatula , Medicago truncatula/metabolismo , Filogenia , Arabidopsis/genética , Arabidopsis/metabolismo , Estrés Salino/genética , Tolerancia a la Sal/genética , Estrés Fisiológico/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
16.
Environ Sci Pollut Res Int ; 31(7): 10874-10886, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38212563

RESUMEN

In the context of carbon neutrality, promoting resource utilization of industrial alkali lignin addressing heavy metal pollution is crucial for China's pollution alleviation and carbon reduction. Microwave pyrolysis produced functionalized biochar from industrial alkali lignin for Ni(II) adsorption. LB400 achieved 343.15 mg g-1 saturated adsorption capacity in 30 min. Pseudo-second-order kinetic and Temkin isotherm models accurately described the adsorption, which was endothermic and spontaneous (ΔGÏ´ < 0, ΔHÏ´ > 0). Quantitative analysis revealed that both dissolved substances and carbon skeleton from biochar contributed to adsorption, with the former predominates (93.76%), including mineral precipitation NiCO3 (Qp) and adsorption of dissolved organic matter (QDOM). Surface complexation (Qc) and ion exchange (Qi) on the carbon skeleton accounted for 6.3%. Higher biochar preparation temperature reduced Ni(II) adsorption by dissolved substances. Overall, biochar which comes from the advantageous disposal of industrial lignin effectively removes Ni(II) contamination, encouraging ecologically sound treatment of heavy metal pollution and sustainable resource utilization.


Asunto(s)
Metales Pesados , Contaminantes Químicos del Agua , Lignina , Adsorción , Carbón Orgánico , Carbono , Álcalis , Cinética
17.
ACS Appl Bio Mater ; 7(3): 1801-1809, 2024 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-38416780

RESUMEN

Bacterial nanocellulose (BNC) is an attractive green-synthesized biomaterial for biomedical applications and various other applications. However, effective engineering of BNC production has been limited by our poor knowledge of the related metabolic processes. In contrast to the traditional perception that genome critically determines biosynthesis behaviors, here we discover that the glucose metabolism could also drastically affect the BNC synthesis in Gluconacetobacter hansenii. The transcriptomic profiles of two model BNC-producing strains, G. hansenii ATCC 53582 and ATCC 23769, which have highly similar genomes but drastically different BNC yields, were compared. The results show that their BNC synthesis capacities were highly related to metabolic activities such as ATP synthesis, ion transport protein assembly, and carbohydrate metabolic processes, confirming an important role of metabolism-related transcriptomes in governing the BNC yield. Our findings provide insights into the microbial biosynthesis behaviors from a transcriptome perspective, potentially guiding cellular engineering for biomaterial synthesis.


Asunto(s)
Perfilación de la Expresión Génica , Transcriptoma , Transcriptoma/genética , Materiales Biocompatibles , Ingeniería Celular , Transporte Iónico
18.
J Exp Bot ; 64(16): 4851-62, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24006424

RESUMEN

Chimeras have been used to study the transmission of genetic material and the resulting genetic variation. In this study, two chimeras, TCC and TTC (where the origin of the outer, middle, and inner cell layers, respectively, of the shoot apical meristem is designated by a 'T' for tuber mustard and 'C' for red cabbage), as well as their asexual and sexual progeny, were used to analyse the mechanism and the inheritance of the variation induced by grafting. Asexual TCC progeny were obtained by adventitious shoot regeneration, while TTC sexual progeny were produced by self-crossing. This study observed similar morphological variations in both the asexual and sexual progeny, including changes in leaf shape and the pattern of shoot apical meristem termination. The leaf shape variation was stable, while the rate of shoot apical meristem termination in the TTC progenies decreased from 74.52% to 3.01% after three successive rounds of self-crossing. Specific red cabbage small RNAs were found in the asexually regenerated plants (rTTT) that were not present in TTT, indicating that small RNAs might be transmitted from red cabbage to tuber mustard during grafting. Moreover, in parallel with the variations in phenotype observed in the progeny, some conserved miRNAs were differentially expressed in rTTT and TTT, which correlated with changes in expression of their target genes. These results suggest that the change in small RNA expression induced by grafting may be an important factor for introducing graft-induced genetic variations, providing a basis for further investigating the mechanism of graft-induced genetic variation through epigenetics.


Asunto(s)
Brassica/genética , Quimera/genética , Variación Genética , ARN de Planta/genética , ARN no Traducido/genética , Brassica/metabolismo , Quimera/metabolismo , Cruzamientos Genéticos , Hibridación Genética , ARN de Planta/metabolismo , ARN no Traducido/metabolismo
19.
Environ Pollut ; 316(Pt 1): 120613, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36351484

RESUMEN

The percolation-degradation process of soluble domestic pollution is very important for the evolution of soil properties and the formation of contaminated sites. The main objective of this study is to investigate the influence of glucose seepage-degradation on the permeability of clay through an indoor percolation test in combination with thermogravimetric measurement with glucose as a representative domestic contaminant soluble sugar. We can conclude that the permeability of clay was significantly impacted by the seepage-degradation of soluble sugar. With a focus on the role of soluble sugars in domestic source pollutants on clay, the formation and evolution of the domestic source contaminated soil site went through three main stages: "generation of domestic source contaminated liquid & formation of S-C zone", "contraction of S-C zone & formation of E-C zone and C zone", and "disappearance of S-C zone & contraction of E-C zone and C zone". The clay permeability decreased, the migration range shrinked, and the pollution level of the clay near the source of the contaminants increased with increasing soluble sugar solution concentration.


Asunto(s)
Contaminación Ambiental , Contaminantes del Suelo , Arcilla , Suelo , Glucosa , Azúcares , Contaminantes del Suelo/análisis
20.
Drug Discov Ther ; 17(3): 157-169, 2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37357394

RESUMEN

The steady-state gut microbiome not only promotes the metabolism and absorption of nutrients that are difficult to digest by the host itself, but also participates in systemic metabolism. Once the dynamic balance is disturbed, the gut microbiome may lead to a variety of diseases. Recurrent pregnancy loss (RPL) affects 1-2% of women of reproductive age, and its prevalence has increased in recent years. According to the literature review, the gut microbiome is a new potential driver of the pathophysiology of recurrent abortion, and the gut microbiome has emerged as a new candidate for clinical prevention and treatment of RPL. However, few studies have concentrated on the direct correlation between RPL and the gut microbiome, and the mechanisms by which the gut microbiome influences recurrent miscarriage need further investigation. In this review, the effects of the gut microbiome on RPL were discussed and found to be associated with inflammatory response, the disruption of insulin signaling pathway and the formation of insulin resistance, maintenance of immunological tolerance at the maternal-fetal interface due to the interference with the immune imbalance of Treg/Th17 cells, and obesity.


Asunto(s)
Aborto Habitual , Microbioma Gastrointestinal , Aborto Habitual/epidemiología , Humanos , Femenino , Embarazo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA