Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Gut ; 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38981667

RESUMEN

OBJECTIVE: The metabolic characteristics of liver cancer drive considerable hurdles to immune cells function and cancer immunotherapy. However, how metabolic reprograming in the tumour microenvironment impairs the antitumour immune response remains unclear. DESIGN: Human samples and multiple murine models were employed to evaluate the correlation between GPR109A and liver cancer progression. GPR109A knockout mice, immune cells depletion and primary cell coculture models were used to determine the regulation of GPR109A on tumour microenvironment and identify the underlying mechanism responsible for the formation of intratumour GPR109A+myeloid cells. RESULTS: We demonstrate that glutamine shortage in liver cancer tumour microenvironment drives an immunosuppressive GPR109A+myeloid cells infiltration, leading to the evasion of immune surveillance. Blockade of GPR109A decreases G-MDSCs and M2-like TAMs abundance to trigger the antitumour responses of CD8+ T cells and further improves the immunotherapy efficacy against liver cancer. Mechanistically, tumour cells and tumour-infiltrated myeloid cells compete for glutamine uptake via the transporter SLC1A5 to control antitumour immunity, which disrupts the endoplasmic reticulum (ER) homoeostasis and induces unfolded protein response of myeloid cells to promote GPR109A expression through IRE1α/XBP1 pathway. The restriction of glutamine uptake in liver cancer cells, as well as the blockade of IRE1α/XBP1 signalling or glutamine supplementation, can eliminate the immunosuppressive effects of GPR109A+ myeloid cells and slow down tumour progression. CONCLUSION: Our findings identify the immunometabolic crosstalk between liver cancer cells and myeloid cells facilitates tumour progression via a glutamine metabolism/ER stress/GPR109A axis, suggesting that GPR109A can be exploited as an immunometabolic checkpoint and putative target for cancer treatment.

2.
Opt Express ; 30(7): 10269-10279, 2022 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-35472998

RESUMEN

The two-way quantum clock synchronization has been shown to provide femtosecond-level synchronization capability and security against symmetric delay attacks, thus becoming a prospective method to compare and synchronize distant clocks with enhanced precision and safety. In this letter, a field test of two-way quantum synchronization between a H-maser and a Rb clock linked by a 7 km-long deployed fiber is implemented by using time-energy entangled photon-pair sources. Limited by the intrinsic frequency stability of the Rb clock, the achieved time stability at 30 s is measured as 32 ps. By applying a fiber-optic microwave frequency transfer technology to build frequency syntonization between the separated clocks, the limit set by the intrinsic frequency stability of the Rb clock is overcome. A significantly improved time stability of 1.9 ps at 30 s is achieved, which is mainly restrained by the low number of acquired photon pairs due to the low sampling rate of the utilized coincidence measurement system. Such implementation demonstrates the high practicability of the two-way quantum clock synchronization method for promoting field applications.

3.
Opt Express ; 29(20): 31582-31593, 2021 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-34615249

RESUMEN

We experimentally investigate the optical storage of perfect optical vortex (POV) and spatially multimode perfect optical vortex (MPOV) beams via electromagnetically induced transparency (EIT) in a hot vapor cell. In particular, we study the role that phase gradients and phase singularities play in reducing the blurring of the retrieved images due to atomic diffusion. Three kinds of manifestations are enumerated to demonstrate such effect. Firstly, the suppression of the ring width broadening is more prominent for POVs with larger orbital angular momentum (OAM). Secondly, the retrieved double-ring MPOV beams' profiles present regular dark singularity distributions that are related to their vortex charge difference. Thirdly, the storage fidelities of the triple-ring MPOVs are substantially improved by designing line phase singularities between multi-ring MPOVs with the same OAM number but π offset phases between adjacent rings. Our experimental demonstration of MPOV storage opens new opportunities for increasing data capacity in quantum memories by spatial multiplexing, as well as the generation and manipulation of complex optical vortex arrays.

4.
Opt Lett ; 46(5): 1021-1024, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33649647

RESUMEN

We report on the optical storage of Ince-Gaussian modes in a warm rubidium vapor cell based on electromagnetically induced transparency protocol, and we also qualitatively analyze how atomic diffusion affects the retrieved beams after storage. Ince-Gaussian modes possess very complex and abundant spatial structures and form a complete infinite-dimensional Hilbert space. Successfully storing such modes could open up possibilities for fundamental high-dimensional optical communication experiments.

5.
Opt Express ; 27(4): 3900-3908, 2019 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-30876014

RESUMEN

Vector beams (VBs) with potential applications are successfully utilized in many fields as light sources with a spatially-varying polarization profile in recent years. Here, we study the transmission of a VB by manipulating atomic polarization via the optical pumping effect. By using hybridly and radially polarized beams as pump and probe beams in a counter-propagating configuration, we observe a four-petal pattern intensity distribution of probe beam, and the four-petal pattern rotates with the polarization state orientation of the pump beam. The results show a polarization dependent absorption in the atomic media. We experimentally demonstrate the absorption characteristics under different polarization combinations of pump and probe beams. The Jones matrix method is used to explain this phenomenon and the simulations are consistent with the experimental observation. Our results may provide a sound foundation for applications in optical manipulation and quantum information in atomic ensembles.

6.
Opt Lett ; 42(6): 1059-1062, 2017 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-28295091

RESUMEN

We experimentally generate a vortex beam through a four-wave mixing (FWM) process after satisfying the phase-matching condition in a rubidium atomic vapor cell with a photonic band gap (PBG) structure. The observed FWM vortex can also be viewed as the reflected part of the launched probe vortex from the PBG. Further, we investigate the propagation behaviors, including the spatial shift and splitting of the probe and FWM vortices in the medium with enhanced Kerr nonlinearity induced by electromagnetically induced transparency. This Letter can be useful for better understanding and manipulating the applications involving the interactions between optical vortices and the medium.

7.
Opt Express ; 24(16): 18290-6, 2016 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-27505792

RESUMEN

As a novel imaging method, ghost imaging has been widely explored in various fields of research, such as lensless ghost imaging, computational ghost imaging, turbulence-free ghost imaging. Recently, ghost imaging in non-degenerated system with pseudo-thermal light has been discussed theoretically, however, to our best knowledge, no experimental evidence has been proven yet. In this paper, we propose a new approach to realize ghost imaging with different frequencies, which are generated through a non-degenerated four-wave mixing(FWM) process in Rb vapor. In our experiment, by employing pseudo-thermal light as the probe beam, we found that the generated FWM signal has a strong second-order correlation with the original thermal light. On basis of that, we successfully implement non-degenerate ghost imaging, and reconstruct highly similar images of objects.

8.
Opt Lett ; 41(22): 5349-5352, 2016 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-27842129

RESUMEN

Ghost imaging is an imaging technique in which the image of an object is revealed only in the correlation measurement between two beams of light, whereas the individual measurements contain no imaging information. Normally, the resolution of the image, which even exceeds the Rayleigh limit, is shown to be related to the transverse coherent length (lc) of the speckle pattern. In this Letter, we demonstrate experimentally that the speckle size can be compressed by a coherent population trapping (CPT) process in atom vapor, and the resolution of GI can be greatly enhanced by the CPT process. The technique we exploit is quite efficient and robust, and it may be useful in the field of quantum and classical two-photon imaging, all-optical image processing, and quantum communication.

9.
Opt Lett ; 40(21): 5066-9, 2015 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-26512520

RESUMEN

We report the theoretical and experimental study of the self-healing property of an Airy beam related to its phase. We find that, even when the phase of an Airy beam is not preserved, the beam still exhibits the self-healing property but undergoes a severe diffraction. To decrease the diffraction effect, we utilize an electromagnetically induced transparency (EIT) image-cloning system based on position selective absorption effect to further demonstrate the self-healing phenomenon. Our experimental results show excellent agreement with the theoretical analysis.

10.
Opt Express ; 22(17): 20177-84, 2014 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-25321227

RESUMEN

We present an experimental study of controlled-NOT (CNOT) gate through four-wave mixing (FWM) process in a Rubidium vapor cell. A degenerate FWM process in a two level atomic system is directly excited by a single diode laser, where backward pump beam and probe beam are Laguerre Gaussian mode. By means of photons carrying orbital angular momentum, we demonstrate the ability to realize CNOT gate with topological charges transformation in this nonlinear process. The fidelity of CNOT gate for a superposition state with different topological charge reaches about 97% in our experiment.

11.
Opt Lett ; 39(15): 4557-60, 2014 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-25078227

RESUMEN

We report on an experimental generation of Airy beams by four-wave mixing (FWM) in atomic vapor cells. This is achieved by using a non-degenerate FWM process, which occurs with two Gaussian pump beams and one Airy signal beam in hot Rubidium vapor. After satisfying the phase matching condition, a FWM field with the profile of an Airy beam can be generated. In our experiment, the diffraction-free and self-healing behaviors of the generated FWM beam are examined. The results shown that the generated FWM beam is an Airy beam. The nonlinear generation process can be extended to other configurations in the atomic medium, which will be useful for manipulation and application of Airy beams in atomic systems.

12.
Opt Lett ; 39(9): 2723-6, 2014 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-24784087

RESUMEN

Transfer and conversion of images between different wavelengths or polarization has significant applications in optical communication and quantum information processing. We demonstrated the transfer of images based on electromagnetically induced transparency (EIT) in a rubidium vapor cell. In experiments, a 2D image generated by a spatial light modulator is used as a coupling field, and a plane wave served as a signal field. We found that the image carried by coupling field could be transferred to that carried by signal field, and the spatial patterns of transferred image are much better than that of the initial image. It also could be much smaller than that determined by the diffraction limit of the optical system. We also studied the subdiffraction propagation for the transferred image. Our results may have applications in quantum interference lithography and coherent Raman spectroscopy.

13.
Opt Express ; 20(22): 24263-71, 2012 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-23187188

RESUMEN

We propose a scheme to implement the Deutsch's algorithm through non-degenerate four-wave mixing process. By employing photon topological charges of optical vortices, we demonstrate the ability to realize the necessary four logic gates for all balanced and constant functions. We also analyze the feasibility of the proposed scheme on the single photon level.

14.
Opt Lett ; 37(5): 984-6, 2012 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-22378460

RESUMEN

A spin polarization separation of reflected light is observed, when a linearly polarized Gaussian beam impinges on an air-glass interface at Brewster angle. In the far-field zone, spins of photons are oppositely polarized in two regions along the direction perpendicular to incident plane. Spatial scale of this polarization is related to optical properties of dielectric and can be controlled by experimental configuration. We believe that this study benefits the manipulation of spins of photons and the development of methods for investigating optical properties of materials.

15.
Nat Commun ; 9(1): 363, 2018 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-29371593

RESUMEN

Quantum memory for flying optical qubits is a key enabler for a wide range of applications in quantum information. A critical figure of merit is the overall storage and retrieval efficiency. So far, despite the recent achievements of efficient memories for light pulses, the storage of qubits has suffered from limited efficiency. Here we report on a quantum memory for polarization qubits that combines an average conditional fidelity above 99% and efficiency around 68%, thereby demonstrating a reversible qubit mapping where more information is retrieved than lost. The qubits are encoded with weak coherent states at the single-photon level and the memory is based on electromagnetically-induced transparency in an elongated laser-cooled ensemble of cesium atoms, spatially multiplexed for dual-rail storage. This implementation preserves high optical depth on both rails, without compromise between multiplexing and storage efficiency. Our work provides an efficient node for future tests of quantum network functionalities and advanced photonic circuits.

16.
Sci Rep ; 7(1): 8015, 2017 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-28808324

RESUMEN

Recent years have seen vast progress in image modulation based on atomic media, with potential applications in both classical optical imaging and quantum imaging regions. However, there have been few investigations of how thermal light images interact with an electromagnetically induced transparent medium. In this letter, we experimentally demonstrate pseudo-thermal light modulation on coherent population trapping conditions in 87 Rb vapor. By introducing the Laguerre-Gaussian beam as the control beam and the encoded speckle as the probe beam, we obtained sharper speckle patterns after the atom cell compared with that in free space. The spatially modulated thermal light was then used to enhance the image resolution in ghost imaging of which the resolution was enhanced by factor 3, since the ghost image resolution is heavily reliant on the speckle's transverse coherent length. Our results are promising for potential applications in high resolution ghost imaging and image metrology, image processing and biomedical imaging.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA