Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Ecotoxicol Environ Saf ; 244: 114050, 2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-36063614

RESUMEN

Exposure to ammonia can cause convulsions, coma, and death. In this study, we investigate the effects of ammonia exposure on immunoregulatory and neuroendocrine changes in Takifugu rubripes. Fish were sampled at 0, 12, 24, 48, and 96 h following exposure to different ammonia concentrations (0, 5, 50, 100, and 150 mg/L). Our results showed that exposure to ammonia significantly reduced the concentrations of C3, C4, IgM, and LZM whereas the heat shock protein 70 and 90 levels significantly increased. In addition, the transcription levels of Mn-SOD, CAT, GRx, and GR in the liver were significantly upregulated following exposure to low ammonia concertation, however, downregulated with increased exposure time. These findings suggest that ammonia poisoning causes oxidative damage and suppresses plasma immunity. Ammonia exposure also resulted in the elevation and depletion of the T3 and T4 levels, respectively. Furthermore, ammonia stress induced an increase in the corticotrophin-releasing hormone, adrenocorticotropic hormone, and cortisol levels, and a decrease in dopamine, noradrenaline, and 5-hydroxytryptamine levels in the brain, illustrating that ammonia poisoning can disrupt the endocrine and neurotransmitter systems. Our results provide insights into the mechanisms underlying the neurotoxic effects of ammonia exposure, which helps to assess the ecological and environmental health risks of this contaminant in marine fish.


Asunto(s)
Amoníaco , Takifugu , Hormona Adrenocorticotrópica/metabolismo , Amoníaco/metabolismo , Animales , Encéfalo/metabolismo , Dopamina/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Hidrocortisona/metabolismo , Inmunidad , Inmunoglobulina M/metabolismo , Neurotransmisores/metabolismo , Norepinefrina/metabolismo , Serotonina/metabolismo , Superóxido Dismutasa/metabolismo , Takifugu/metabolismo , Glándula Tiroides/metabolismo , Hormonas Tiroideas/metabolismo
2.
Fish Physiol Biochem ; 48(5): 1167-1181, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35941472

RESUMEN

Tiger pufferfish (Takifugu rubripes) is one of Asia's most economically valuable aquaculture species. However, winter production of this species in North China is limited by low water temperature and unavailability of high-quality feed, resulting in high mortality and low profitability. Therefore, the aim of this study was to evaluate the effect of feeding frequency (F1: one daily meal; F2: two daily meals; F3: four daily meals; F4: continuous diurnal feeding using a belt feeder) on the growth performance, plasma biochemistry, digestive and antioxidant enzyme activities, and expression of appetite-related genes in T. rubripes (initial weight: 266.80 ± 12.32 g) cultured during winter (18.0 ± 1.0 °C) for 60 days. The results showed that fish in the F3 group had the highest final weight, weight gain rate, specific growth rate, survival rate, and best feed conversion ratio. Additionally, daily feed intake increased significantly with increasing feeding frequency. The protein efficiency and lipid efficiency ratios of fish in the F3 group were significantly higher than those of fish in the other groups. Furthermore, total cholesterol, triglycerides, and glucose levels increased with increasing feeding frequency, peaking in the F2 group and decreasing under higher feeding frequencies. The antioxidant (superoxide dismutase, catalase, glutathione, and glutathione peroxidase) and digestive (trypsin, amylase, and lipase) enzyme activities of fish in the F1 group were significantly higher than those of fish in the F3 and F4 groups. Additionally, there was a decrease in orexin expression with increasing feeding frequency. In contrast, the expression levels of tachykinin, cholecystokinin, and leptin increased with increasing feeding frequency, peaking in the F4 group. Overall, the findings of this study indicated that a feeding frequency of four meals per day was optimal for improved growth performance of pufferfish juveniles cultured during winter.


Asunto(s)
Antioxidantes , Takifugu , Animales , Takifugu/metabolismo , Catalasa/genética , Catalasa/metabolismo , Antioxidantes/metabolismo , Leptina/metabolismo , Orexinas/metabolismo , Orexinas/farmacología , Apetito , Glutatión Peroxidasa/genética , Glutatión Peroxidasa/metabolismo , Tripsina/metabolismo , Estrés Oxidativo , Superóxido Dismutasa/metabolismo , Peces/metabolismo , Triglicéridos/metabolismo , Colesterol/metabolismo , Glutatión/metabolismo , Colecistoquinina , Amilasas/metabolismo , Lipasa/metabolismo , Agua/metabolismo , Glucosa/metabolismo , Lípidos/farmacología
3.
Animals (Basel) ; 13(24)2023 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-38136838

RESUMEN

To investigate the shifts in the biochemical composition of hybrid grouper during the early larval stages, we collected samples at various developmental milestones, spanning from newly hatched larvae (stage I) to 4 days after hatching (stage V). Our findings revealed several notable trends: (1) The total length of hybrid grouper larvae exhibited a significant increase as the yolk-sac absorption progressed from stage I to V. Concurrently, there was a marked decrease in yolk volume and oil volume during the transition from stage I to III, followed by a gradual decline from stage III to V. (2) Dry weight and total lipid content displayed a rapid reduction throughout the larval development period, while the total protein content exhibited a declining trend. (3) The concentrations of triacylglycerols and wax esters/steryl esters decreased considerably, particularly at stage V. However, no differences were observed among the contents of ketones, hydrocarbons, and sterols. (4) As yolk-sac larvae developed from stage I to V, a significant reduction was observed in the levels of essential amino acids (EAAs), such as leucine, valine, isoleucine, phenylalanine, glycine, alanine, serine, proline, and tyrosine. This trend was also observed for non-EAAs and total amino acids, with fluctuations in the content of other amino acids. (5) There was a significant decrease in the levels of specific fatty acids, including C16:0, saturated fatty acids (SFAs), monounsaturated fatty acids (MUFAs), C18:0, 18:1n-9, and C20:4n-6. In contrast, the contents of C22:6n-3, polyunsaturated fatty acids (PUFAs), n-3 PUFA, n-6 PUFA, and the combination of docosahexaenoic acid (DHA) + eicosapentaenoic acid (EPA), as well as the DHA/EPA ratio, remained stable from stage I to III but declined thereafter. (6) During the early developmental stages, the utilization sequence of fatty acids followed a pattern of prioritizing SFAs, followed by MUFAs, n-6 PUFA, and n-3 PUFA. These findings provide further insights into the nutritional priorities of hybrid grouper larvae during their early development, with a particular emphasis on lipids and fatty acids as vital energy sources. Additionally, our results highlight variations in the efficiency of utilization among different types of fatty acids, while protein utilization remained relatively stable, characterized by the selective consumption of amino acid content.

4.
Aquat Toxicol ; 264: 106714, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37862731

RESUMEN

Even though manganese is a bioelement essential for metabolism, excessive manganese levels in water can be detrimental to fish development and growth. Therefore, the aim of this study was to evaluate the effects of Mn2+ (0, 0.5,1, 2, and 4 mg·L-1) exposure for 30 d on the growth performance, growth hormone/insulin-like growth factor (GH/IGF) axis, hypothalamic-pituitary-thyroid (HPT) axis, and monoaminergic neurotransmitters of Epinephelus moara♀×Epinephelus lanceolatus♂(Yunlong grouper). Compared with the control and low Mn2+concentration groups of (0.5 and 1 mg·L-1), the high concentration of Mn2+ (4 mg·L-1) significantly reduced body weight (BW), body length (BL), weight gain rate (WGR), and specific growth rate (SGR), increased the feed coefficient rate (FCR) and mortality of Yunlong groupers (P < 0.05). Further, the levels of GH and IGF, along with the expression of ghra and ghrb were significantly reduced after exposure to 2 and 4 mg·L-1 Mn2+for 30 d, whereas the expression of sst5 was significantly up-regulated after exposure to 2 and 4 mg·L-1 Mn2+for 20 and 30 days. Moreover, Mn2+exposure increased thyroid hormone (T3) and thyroid stimulating hormone (TSH) contents, accompanied by increased mRNA levels of dio1 and dio2, however, the T4 level was decreased. Finally, dopamine (DA) and serotonin (5-HT) levels significantly decreased after long-term exposure to higher concentrations of Mn2+, and the levels their metabolites changed as well, suggesting that the synthesis and metabolism of DA and 5-HT were affected. Accordingly, changes in the GH/IGF and HPT axes-related parameters may be the cause of growth inhibition in juvenile groupers under Mn2+ exposure, indicating that the relationship between endocrine disorder and growth inhibition should not be ignored.


Asunto(s)
Lubina , Contaminantes Químicos del Agua , Animales , Lubina/fisiología , Manganeso , Serotonina , Contaminantes Químicos del Agua/toxicidad , Sistema Endocrino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA